
PSoC® Creator™

System Reference Guide
cy_boot Component v2.40

Document Number: 001-73816, Rev. **

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone (USA): 800.858.1810

Phone (Intl): 408.943.2600
http://www.cypress.com



Copyrights

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 2

© Cypress Semiconductor Corporation, 2011. The information contained herein is subject to change
without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any
circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license
under patent or other rights. Cypress products are not warranted nor intended to be used for medical,
life support, life saving, critical control or safety applications, unless pursuant to an express written
agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical
components in life-support systems where a malfunction or failure may reasonably be expected to result
in significant injury to the user. The inclusion of Cypress products in life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against
all charges.

PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are
trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced
herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation
(Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and
compile the Cypress Source Code and derivative works for the sole purpose of creating custom
software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation,
compilation, or representation of this Source Code except as specified above is prohibited without the
express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right
to make changes without further notice to the materials described herein. Cypress does not assume any
liability arising out of the application or use of any product or circuit described herein. Cypress does not
authorize its products for use as critical components in life-support systems where a malfunction or
failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’
product in a life-support systems application implies that the manufacturer assumes all risk of such use
and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.



PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 3

Contents

1 Introduction .................................................................................................................................... 5
Conventions............................................................................................................................... 6
References ................................................................................................................................ 6
Revision History......................................................................................................................... 6

2 Standard Types and Defines ......................................................................................................... 7
Base Types ................................................................................................................................ 7
Hardware Register Types .......................................................................................................... 7
Compiler Defines ....................................................................................................................... 7
Keil 8051 Compatibility Defines................................................................................................. 8
Return Codes............................................................................................................................. 8
Interrupt Types and Macros....................................................................................................... 9
Intrinsic Defines ......................................................................................................................... 9
Device Version Defines ............................................................................................................. 9

3 Clocking ........................................................................................................................................ 11
PSoC Creator Clocking Implementation.................................................................................. 11
APIs ......................................................................................................................................... 20

4 Power Management ..................................................................................................................... 29
Clock Configuration ................................................................................................................. 29
Wakeup Time Configuration .................................................................................................... 30
Wakeup Source Configuration................................................................................................. 30
APIs ......................................................................................................................................... 31
Instance Low Power APIs........................................................................................................ 37

5 Interrupts....................................................................................................................................... 39
APIs ......................................................................................................................................... 39

6 Cache............................................................................................................................................. 43
PSoC 3 Cache Functionality.................................................................................................... 43
PSoC 5 Cache Functionality.................................................................................................... 43

7 Pins................................................................................................................................................ 45
APIs ......................................................................................................................................... 45

8 Register Access ........................................................................................................................... 47
APIs ......................................................................................................................................... 47



Contents

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 4

9 DMA ............................................................................................................................................... 51

10 Flash and EEPROM...................................................................................................................... 53
APIs ......................................................................................................................................... 54

11 Bootloader System ...................................................................................................................... 59
Bootloader Component............................................................................................................ 59
Communications Component .................................................................................................. 60
Custom Bootloader Component .............................................................................................. 61
Bootloader Project Types ........................................................................................................ 63
Memory Usage ........................................................................................................................ 65
Bootloader Parameters............................................................................................................ 66
Bootloadable Parameters ........................................................................................................ 68
Bootloader API......................................................................................................................... 69
Bootloader Commands............................................................................................................ 69
Bootloader Packets ................................................................................................................. 74
Bootloader Status/Error Codes................................................................................................ 75
Bootloader Application & Code Data File Format.................................................................... 75
Bootloader Host Tool ............................................................................................................... 76

12 System Functions ........................................................................................................................ 79
General APIs............................................................................................................................ 79
CyDelay APIs........................................................................................................................... 80

13 Startup and Linking...................................................................................................................... 83
PSoC 3 .................................................................................................................................... 83
PSoC 5 .................................................................................................................................... 83
CMSIS Support (PSoC 5)........................................................................................................ 84
Preservation of Reset Status (PSoC 3 and PSoC 5)............................................................... 84

14 Watchdog Timer ........................................................................................................................... 85
APIs ......................................................................................................................................... 85

15 cy_boot Component Changes .................................................................................................... 87
Version 2.40............................................................................................................................. 87
Version 2.30............................................................................................................................. 87
Version 2.21............................................................................................................................. 88
Version 2.20............................................................................................................................. 89
Version 2.10............................................................................................................................. 89
Version 2.0............................................................................................................................... 90



PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 5

1 Introduction

This System Reference Guide describes functions supplied by the PSoC Creator cy_boot component.
The cy_boot component provides the system functionality for a project to give better access to chip
resources. The functions are not part of the component libraries but may be used by them. You can use
the function calls to reliably perform needed chip functions.

The cy_boot component is unique:

 Included automatically into every project

 Only a single instance can be present

 No symbol representation

 Not present in the Component Catalog (by default)

As the system component, cy_boot includes various pieces of library functionality. This guide is organized
by these functions:

 DMA

 Flash

 Clocking

 Power management

 Start up code

 Various library functions

 Linker scripts

The cy_boot component presents an API that enables user firmware to accomplish the tasks described in
this guide. There are multiple major functional areas that are described separately.



Introduction

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 6

Conventions
The following table lists the conventions used throughout this guide:

Convention Usage
Courier New Displays file locations and source code:

C:\ …cd\icc\, user entered text
Italics Displays file names and reference documentation:

sourcefile.hex
[bracketed, bold] Displays keyboard commands in procedures:

[Enter] or [Ctrl] [C]
File > New Project Represents menu paths:

File > New Project > Clone
Bold Displays commands, menu paths and selections, and icon names in

procedures:
Click the Debugger icon, and then click Next.

Text in gray boxes Displays cautions or functionality unique to PSoC Creator or the PSoC device.

References
This guide is one of a set of documents pertaining to PSoC Creator and PSoC devices. Refer to the
following other documents as needed:

 PSoC Creator Help

 PSoC Creator Component Data Sheets

 PSoC Creator Component Author Guide

 PSoC 3 and PSoC 5 Technical Reference Manual (TRM)

Revision History
Document Title: PSoC® Creator™ System Reference Guide, cy_boot Component v2.40
Document Number: 001-73816, Rev. **

Revision Date Description of Change

** New document for version 2.40 of the cy_boot component.
Refer to the change section for component changes from
previous versions.



PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 7

2 Standard Types and Defines

To support the operation of the same code across multiple CPUs with multiple compilers, the cy_boot
component provides types and defines that create consistent results across platforms.

Base Types
Type Description

char8 8-bit (signed or unsigned, depending on the compiler selection for char)
uint8 8-bit unsigned
uint16 16-bit unsigned
uint32 32-bit unsigned
int8 8-bit signed
int16 16-bit signed
int32 32-bit signed

Hardware Register Types
Hardware registers typically have side effects and therefore are referenced with a volatile type.

Define Description

reg8 Volatile 8-bit unsigned
reg16 Volatile 16-bit unsigned
reg32 Volatile 32-bit unsigned

Compiler Defines
The compiler being used can be determined by testing for the definition of the specific compiler. For
example, to test for the PSoC 3 Keil compiler:

#if defined(__C51__)

Define Description

__C51__ Keil 8051 compiler
__GNUC__ ARM GCC compiler
__ARMCC_VERSION ARM Realview compiler used by Keil MDK and RVDS tool sets



Standard Types and Defines

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 8

Keil 8051 Compatibility Defines
The Keil 8051 compiler supports type modifiers that are specific to this platform. For other platforms these
modifiers must not be present. For compatibility these types are supported by defines that map to the
appropriate string when compiled for Keil and an empty string for other platforms. These defines are used
to create optimized Keil 8051 code while still supporting compilation on other platforms.

Define Keil Type Other Platforms

CYBDTA bdata
CYBIT bit uint8
CYCODE code
CYCOMPACT compact
CYDATA data
CYFAR far
CYIDATA idata
CYLARGE large
CYPDATA pdata
CYREENTRANT reentrant
CYSMALL small
CYXDATA xdata

Return Codes
Return codes from Cypress routines are returned as an 8-bit unsigned value type: cystatus. The standard
return values are:

Define Description

CYRET_SUCCESS Successful
CYRET_UNKNOWN Unknown failure
CYRET_BAD_PARAM One or more invalid parameters
CYRET_INVALID_OBJECT Invalid object specified
CYRET_MEMORY Memory related failure
CYRET_LOCKED Resource lock failure
CYRET_EMPTY No more objects available
CYRET_BAD_DATA Bad data received (CRC or other error check)
CYRET_STARTED Operation started, but not necessarily completed yet
CYRET_FINISHED Operation completed
CYRET_CANCELED Operation canceled
CYRET_TIMEOUT Operation timed out
CYRET_INVALID_STATE Operation not setup or is in an improper state



Standard Types and Defines

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 9

Interrupt Types and Macros
Types and macros provide consistent definition of interrupt service routines across compilers and
platforms. Note that the macro to use is different between the function definition and the function
prototype.

Function definition example:
CY_ISR(MyISR)
{

/* ISR Code here */
}

Function prototype example:
CY_ISR_PROTO(MyISR);

Interrupt vector address type
Type Description

cyisraddress Interrupt vector (address of the ISR function)

Intrinsic Defines
Define Description

CY_NOP Processor NOP instruction

Device Version Defines
Define Description
CY_PSOC3 Any PSoC 3 Device
CY_PSOC5 Any PSoC 5 Device
CY_PSOC3_ES3 PSoC 3 ES3 or Later
CY_PSOC3_ES2 PSoC 3 ES2



Standard Types and Defines

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 10



PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 11

3 Clocking

PSoC Creator Clocking Implementation
PSoC devices supported by PSoC Creator have flexible clocking capabilities. These clocking capabilities
are controlled in PSoC Creator by selections within the Design-Wide Resources settings, connectivity of
clocking signals on the design schematic, and API calls that can modify the clocking at runtime.

This section describes how PSoC Creator maps clocks onto the device and provides guidance on
clocking methodologies that are optimized for the PSoC architecture.

Clock Connectivity

The PSoC architecture includes flexible clock generation logic. Refer to the Technical Reference Manual
for a detailed description of all the clocking sources available in a particular device. The usage of these
various clocking sources can be categorized by how those clocks are connected to elements of a design.

BUS_CLK

This is a special clock. It is closely related to MASTER_CLK. For most designs, MASTER_CLK and
BUS_CLK will be the same frequency and considered to be the same clock. These must be the highest
speed clocks in the system. The CPU will be running off of BUS_CLK and all the peripherals will
communicate to the CPU and DMA using BUS_CLK. When a clock is synchronized, it is synchronized to
MASTER_CLK. When a pin is synchronized it is synchronized to BUS_CLK.

Global Clock

This is a clock that is placed on one of the global low skew digital clock lines. This also includes
BUS_CLK. When a clock is created using a Clock component, it will be created as a global clock. This
clock must be directly connected to a clock input or may be inverted before connection to a clock input.
Global clock lines connect only to the clock input of the digital elements in PSoC. If a global clock line is
connected to something other than a clock input (that is, combinatorial logic or a pin), then the signal is
not sent using low skew clock lines.

Routed Clock

Any clock that is not a global clock is a routed clock. This includes clocks generated by logic (with the
exception of a single inverter) and clocks that come in from a pin.

Clock Synchronization

Each clock in a PSoC device is either synchronous or asynchronous. This is in reference to BUS_CLK
and MASTER_CLK. PSoC is designed to operate as a synchronous system. This was done to enable
communication between the programmable logic and either the CPU or DMA. If these are not



Clocking

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 12

synchronous to a common clock, then any communication requires clocking crossing circuitry. Generally,
asynchronous clocking is not supported except for PLD logic that does not interact with the CPU system.

Synchronous Clock

Examples of synchronous clocks include:

 Global clock with sync to MASTER_CLK option set. This option is set by default on the
Advanced tab of the Clock component Configure dialog.

 Clock from an input pin with the "Input Synchronized" option selected. This option is set by default
on the Input tab of the Pins component Configure dialog.

 Clock derived combinatorially from signals that were all generated from registers that are clocked
by synchronous clocks.

Asynchronous Clock

An asynchronous clock is any clock that is not synchronous. Some examples are:

 Any signal coming in from the Digital System Interconnect (DSI) other than a synchronized pin.
These signals must be considered asynchronous because their timing is not guaranteed. This
includes:

 What would normally be a global clock (if connected directly to a clock input) that is fed
through logic before being used as a clock

 Fixed function block outputs (that is, Counter, Timer, PWM)
 Digital signals from the analog blocks

 Global clock without the sync option set

 Clock from an input pin with Input Synchronized not selected

 Clock that is combinatorially created using any asynchronous signal

Making Signals Synchronous

Depending on the source of the clock signal, it can be made synchronous using different methods:

 An asynchronous global clock can be made synchronous by checking the Sync with
MASTER_CLK option in the Clock component Configure dialog (this is the default selection).

 A routed clock coming from a pin can be made synchronous by checking the Input
Synchronized option in the Pins component Configure dialog (this is the default selection, under
the Pins tab).

 Any signal can be made synchronous by using the Sync component and a synchronous clock as
the clock signal.

When synchronizing a signal:

 The synchronizing clock must be at least 2x the frequency of the signal being synchronized. If this
rule is violated, then incoming clock edges can be missed and therefore not reflected in the
resulting synchronized clock.

 The clock signal output will have all its transitions on the rising edge of the synchronizing clock.

 The clock signal output will have its edges moved from their original timing.

 The clock signal output will have variation in the high and low pulse widths unless the incoming
clock and the synchronizing clock are directly related to each other.



Clocking

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 13

The following example shows two clocks that have been synchronized to BUS_CLK. Clock_1 has exactly
2x the period of BUS_CLK. Clock_2 has a period of approximately 3x the period of BUS_CLK. That
results in the high and low pulse widths varying between 1 and 2 BUS_CLK periods. In both cases all
transitions occur at the rising edge of BUS_CLK.

Routed Clock Implementation

The clocking implementation in PSoC directly connects global clock signals to the clock input of clocked
digital logic. This applies to both synchronous and asynchronous clocks. Since global clocks are
distributed on low skew clock lines, all clocked elements connected to the same global clock will be
clocked at the same time.

Routed clocks are distributed using the general digital routing fabric. This results in the clock arriving at
each destination at different times. If that clock signal was used directly as the clock, then it would force
the clock to be considered an asynchronous clock. This is because it cannot be guaranteed to transition
at the rising edge of BUS_CLK. This can also result in circuit failures if the output of a register clocked by
an early arriving clock is used by a register clocked by a late arriving version of the same clock.

Under some circumstances, PSoC Creator can transform a routed clock circuit into a circuit that uses a
global clock. If all the sources of a routed clock can be traced back to the output of registers that are
clocked by common global clocks, then the circuit is transformed automatically by PSoC Creator. The
cases where this is possible are:

 All signals are derived from the same global clock. This global clock can be asynchronous or
synchronous.

 All signals are derived from more than one synchronous global clock. In this case, the common
global clock is BUS_CLK.

The clocking implementation in PSoC includes a built-in edge detection circuit that is used in this
transformation. This does not use PLD resources to implement. The following shows the logical
implementation and the resulting clock timing diagram.



Clocking

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 14

This diagram shows that the resulting clock occurs synchronous to the global clock on the first clock after
a rising edge of the routed clock.

When analyzing the design to determine the source of a routed clock, another routed clock that was
transformed may be encountered. In that case, the global clock used in that transformation is considered
the source clock for that signal.

The clock transformation used for every routed clock is reported in the report file. This file is located in the
Workspace Explorer under the Results tab after a successful build. The details are shown under the
"Initial Mapping" heading. Each routed clock will be shown with the "Effective Clock" and the "Enable
Signal". The "Effective Clock" is the global clock that is used and the "Enable Signal" is the routed clock
that is edge detected and used as the enable for that clock.

Example with a Divided Clock

A simple divided clock circuit can be used to observe how this transformation is done. The following circuit
clocks the first flip-flop (cydff_1) with a global clock. This generates a clock that is divided by 2 in
frequency. That signal is used as a routed clock that clocks the next flip-flop (cydff_2).

The report file indicates that one global clock has been used and that the single routed clock has been
transformed using the global clock as the effective clock.



Clocking

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 15

The resulting signals generated by this circuit are as follows.

It may appear that the Div4 signal is generated by the falling edge of the Div2 signal. This is not the case.
The Div4 signal is generated on the first Clock_1 rising edge following a rising edge on Div2.

Example with a Clock from a Pin

In the following circuit, a clock is brought in on a pin with synchronization turned on. Since
synchronization of pins is done with BUS_CLK, the transformed circuit uses BUS_CLK as the Effective
Clock and uses the rising edge of the pin as the Enable Signal.

If input synchronization was not enabled at the pin, there would not be a global clock to use to transform
the routed clock, and the routed clock would be used directly.



Clocking

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 16

Example with Multiple Clock Sources

In this example, the routed clock is derived from flip-flops that are clocked by two different clocks. Both of
these clocks are synchronous, so BUS_CLK is the common global clock that becomes the Effective
Clock.

If either of these clocks had been asynchronous, then the routed clock would have been used directly.



Clocking

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 17

Overriding Routed Clock Transformations

The automatic transformation that PSoC Creator performs on routed clocks is generally the
implementation that should be used. There is however a method to force the routed clock to be used
directly. The UDBClkEn component configured in Async mode will force the clock used to be the routed
clock, as shown in the following circuit.

Using Asynchronous Clocks

Asynchronous clocks can be used with PLD logic. However, they are not automatically supported by
control registers, status registers and datapath elements because of the interaction with the CPU those
elements have. Most Cypress library components will only work with synchronous clocks. They
specifically force the insertion of a synchronizer automatically if the clock provided is asynchronous.
Components that are designed to work with asynchronous clocks such as the SPI Slave will specifically
describe how they handle clocking in their datasheet.

If an asynchronous clock is connected directly to something other than PLD logic, then a Design Rule
Check (DRC) error is generated. For example, if an asynchronous pin is connected to a control register
clock, a DRC error is generated.

As stated in the error message, the error can be removed by using a UDBClkEn component in async
mode. That won’t remove the underlying synchronization issue, but it will allow the design to override the
error if the design has handled synchronization in some other way.

Clock Crossing

Multiple clock domains are commonly needed in a design. Often these multiple domains do not interact
and therefore clocking crossings do not occur. In the case where signals generated in one clock domain
need to be used in another clock domain, special care must be taken. There is the case where the two
clock domains are asynchronous from each other and the case where both clock domains are
synchronous to BUS_CLK.



Clocking

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 18

When both clocks are synchronous to BUS_CLK, signals from the slower clock domain can be freely
used in the other clock domain. In the other direction, care must be taken that the signals from the faster
clock domain are active for a long enough period that they will be sampled by the slower clock domain. In
both directions the timing constraints that must be met are based on the speed of BUS_CLK not the
speed of either of the clock domains.

The only guarantee between the clock domains is that their edges will always occur on a rising edge of
BUS_CLK. That means that the rising edges of the two clock domains can be as close as a single
BUS_CLK cycle apart. This is true even when the clock domains are multiples of each other, since their
clock dividers are not necessarily aligned. If combinatorially logic exists between the two clock domains, a
flip-flop may need to be inserted to keep from limiting the frequency of BUS_CLK operation. By inserting
the flip-flop, the crossing from one clock domain to the other is a direct flip-flop to flip-flop path.

When the clock domains are unrelated to each other, a synchronizer must be used between the clock
domains. The Sync component can be used to implement the synchronization function. It should be
clocked by the destination clock domain.

The Sync component is implemented using a special mode of the status register that implements a
double synchronizer. The input signal must have a pulse width of at least the period of the sampling clock.
The exact delay to go through the synchronizer will vary depending on the alignment of the incoming
signal to the synchronizing clock. This can vary from just over one clock period to just over two clock
periods. If multiple signals are being synchronized, the time difference between two signals entering the
synchronizer and those same two signals at the output can change by as much as one clock period,
depending on when each is successfully sampled by the synchronizer.

Gated Clocks

Global clocks should not be used for anything other than directly clocking a circuit. If a global clock is
used for logic functionality, the signal is routed using an entirely different path without guaranteed timing.
A circuit such as the following should be avoided since timing analysis cannot be performed.

This circuit is implemented with a routed clock, has no timing analysis support, and is prone to the
generation of glitches on the clock signal when the clock is enabled and disabled.

The following circuit implements the equivalent function and is supported by timing analysis, only uses
global clocks, and has no reliability issues. This circuit does not gate the clock, but instead logically
enables the clocking of new data or maintains the current data.



Clocking

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 19

If access to a clock is needed, for example to generate a clock to send to a pin, then a 2x clock should be
used to clock a toggle flip-flop. The output of that flip-flop can then be used with the associated timing
analysis available.

Fixed-Function Clocking

On the schematic, the clock signals sent to fixed-function peripherals and to UDB-based peripherals
appear to be the same clock. However, the timing relationship between the clock signals as they arrive at
these different peripheral types is not guaranteed. Additionally the routing delay for the data signals is not
guaranteed. Therefore when fixed-function peripherals are connected to signals in the UDB array, the
signals must be synchronized as shown in the following example. No timing assumptions should be made
about signals coming from fixed-function peripherals.



Clocking

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 20

APIs

uint8 CyPLL_OUT_Start(uint8 wait)
Description: Enables the PLL. Optionally waits for it to become stable. Waits at least 250 us or

until it is detected that the PLL is stable.
Parameters: wait:

 0: Return immediately after configuration
 1: Wait for PLL lock or timeout

Return Value: Status
 CYRET_SUCCESS - Completed successfully
 CYRET_TIMEOUT - Timeout occurred without detecting a stable clock. If

the input source of the clock is jittery, then the lock indication may not
occur. However, after the timeout has expired the generated PLL clock
can still be used.

Side Effects and
Restrictions:

If wait is enabled:
Uses the Fast Time Wheel to time the wait. Any other use of the Fast Time Wheel
will be stopped during the period of this function and then restored.
Uses the 100 KHz ILO. If not enabled, this function will enable the 100 KHz ILO
for the period of this function.
No changes to the setup of the ILO, Fast Time Wheel, Central Time Wheel or
Once Per Second interrupt may be made by interrupt routines during the period of
this function. The current operation of the ILO, Central Time Wheel and Once Per
Second interrupt are maintained during the operation of this function provided the
reading of the Power Manager Interrupt Status Register is only done using the
CyPMReadStatus() function.

void CyPLL_OUT_Stop()
Description: Disables the PLL.
Parameters: None

Return Value: None

void CyPLL_OUT_SetPQ(uint8 P, uint8 Q, uint8 current)
Description: Sets the P and Q dividers and the charge pump current. The Frequency Out will

be P/Q * Frequency In. The PLL must be disabled before calling this function.
Parameters: P: Valid range [4 - 255]

Q: Valid range [1 - 16]. Input Frequency / Q must be in the range of 1 MHz to
3 MHz.
current: Valid range [1 - 7]. Charge pump current in uA. Recommendation of 2uA
for output frequencies of 67 MHz or less and 3 uA for higher output frequencies.

Return Value: None



Clocking

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 21

void CyPLL_OUT_SetSource(uint8 source)
Description: Sets the input clock source to the PLL. The PLL must be disabled before calling

this function.
Parameters: source: One of the three available PLL clock sources

Value Define Source

0 CY_PLL_SOURCE_IMO IMO
1 CY_PLL_SOURCE_XTAL MHz Crystal
2 CY_PLL_SOURCE_DSI DSI

Return Value: None

void CyIMO_Start(uint8 wait)
Description: Enables the IMO. Optionally waits at least 6us for it to settle.
Parameters: wait:

 0: Return immediately after configuration
 1: Wait for at least 6us for the IMO to settle

Return Value: None
Side Effects and

Restrictions:
If wait is enabled:
Uses the Fast Time Wheel to time the wait. Any other use of the Fast Time Wheel
will be stopped during the period of this function and then restored.
Uses the 100 KHz ILO. If not enabled, this function will enable the 100 KHz ILO
for the period of this function.
No changes to the setup of the ILO, Fast Time Wheel, Central Time Wheel or
Once Per Second interrupt may be made by interrupt routines during the period of
this function. The current operation of the ILO, Central Time Wheel and Once Per
Second interrupt are maintained during the operation of this function provided the
reading of the Power Manager Interrupt Status Register is only done using the
CyPMReadStatus() function.

void CyIMO_Stop()
Description: Disables the IMO.
Parameters: None

Return Value: None



Clocking

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 22

void CyIMO_SetFreq(uint8 freq)
Description: Sets the frequency of the IMO. Changes may be made while the IMO is running.

When the USB setting is chosen, the USB clock locking circuit is enabled.
Otherwise this circuit is disabled. The USB block must be powered before selecting
the USB setting. If the IMO is currently driving the Master clock, then the Flash wait
states must be set appropriately before making this change by using
CyFlash_SetWaitCycles().

Parameters: freq: Frequency of IMO operation

Value Define Frequency

0 CY_IMO_FREQ_3MHZ 3 MHz
1 CY_IMO_FREQ_6MHZ 6 MHz
2 CY_IMO_FREQ_12MHZ 12 MHz
3 CY_IMO_FREQ_24MHZ 24 MHz
4 CY_IMO_FREQ_48MHZ 48 MHz
5 CY_IMO_FREQ_62MHZ 62.6 MHz
6 CY_IMO_FREQ_74MHZ 74.7 MHz (PSoC 5)
8 CY_IMO_FREQ_USB 24 MHz (Trimmed for USB operation)

Return Value: None

void CyIMO_SetSource(uint8 source)
Description: Sets the source of the clock output from the IMO block. The output from the IMO

is by default the IMO itself. Optionally the MHz Crystal or a DSI input can be the
source of the IMO output instead. If the IMO is currently driving the Master clock,
then the Flash wait states must be set appropriately before making this change by
using CyFlash_SetWaitCycles().

Parameters: source: One of the three available IMO output sources

Value Define Source

0 CY_IMO_SOURCE_IMO IMO
1 CY_IMO_SOURCE_XTAL MHz Crystal
2 CY_IMO_SOURCE_DSI DSI

Return Value: None

void CyIMO_EnableDoubler()
Description: Enables the IMO doubler. The 2x frequency clock is used to convert a 24 MHz

input to a 48 MHz output for use by the USB block.
Parameters: None

Return Value: None



Clocking

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 23

void CyIMO_DisableDoubler()
Description: Disables the IMO doubler.
Parameters: None

Return Value: None

void CyMasterClk_SetSource(uint8 source)
Description: Sets the source of the master clock. The current source and the new source must

both be running and stable before calling this function. The Flash wait states must
be set appropriately before making this change by using
CyFlash_SetWaitCycles().

Parameters: source: One of the four available Master clock sources

Value Define Source

0 CY_MASTER_SOURCE_IMO IMO
1 CY_MASTER_SOURCE_PLL PLL
2 CY_MASTER_SOURCE_XTAL MHz Crystal
3 CY_MASTER_SOURCE_DSI DSI

Return Value: None

void CyMasterClk_SetDivider(uint8 divider)
Description: Sets the divider value used to generate Master Clock. The Flash wait states must

be set appropriately before making this change by using
CyFlash_SetWaitCycles().

Parameters: divider: Valid range [0-255]. The clock will be divided by this value + 1. For
example to divide by 2 this parameter should be set to 1.

Return Value: None

void CyBusClk_SetDivider(uint16 divider)
Description: Sets the divider value used to generate Bus Clock. The Flash wait states must be

set appropriately before making this change by using CyFlash_SetWaitCycles().
Parameters: divider: Valid range [0-65535]. The clock will be divided by this value + 1. For

example to divide by 2 this parameter should be set to 1.
Return Value: None

void CyCpuClk_SetDivider(uint8 divider)
Description: Sets the divider value used to generate the CPU Clock. Applies to PSoC 3 only.
Parameters: divider: Valid range [0-15]. The clock will be divided by this value + 1. For

example to divide by 2 this parameter should be set to 1.
Return Value: None



Clocking

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 24

void CyUsbClk_SetSource(uint8 source)
Description: Sets the source of the USB clock.
Parameters: source: One of the four available USB clock sources

Value Define Source

0 CY_USB_SOURCE_IMO2X IMO 2x
1 CY_USB_SOURCE_IMO IMO
2 CY_USB_SOURCE_PLL PLL
3 CY_USB_SOURCE_DSI DSI

Return Value: None

void CyILO_Start1K()
Description: Enables the ILO 1 KHz oscillator.

Note The ILO 1 KHz oscillator is always enabled by default, regardless of the
selection in the Clock Editor. Therefore, this API is only needed if the oscillator
was turned off manually.

Parameters: None
Return Value: None

void CyILO_Stop1K()
Description: Disables the ILO 1 KHz oscillator.

Note The ILO 1 KHz oscillator must be enabled if Sleep or Hibernate low power
mode APIs are expected to be used. For more information, refer to the Power
Management section of this document.

Parameters: None
Return Value: None

void CyILO_Start100K()
Description: Enables the ILO 100 KHz oscillator.
Parameters: None

Return Value: None

void CyILO_Stop100K()
Description: Disables the ILO 100 KHz oscillator.
Parameters: None

Return Value: None



Clocking

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 25

void CyILO_Enable33K()
Description: Enables the ILO 33 KHz divider. Note The 33 KHz clock is generated from the

100 KHz oscillator, so it must also be running in order to generate the 33 KHz
output.

Parameters: None
Return Value: None

void CyILO_Disable33K()
Description: Disables the ILO 33 KHz divider. Note that the 33 KHz clock is generated from

the 100 KHz oscillator, but this API does not disable the 100 KHz clock.
Parameters: None

Return Value: None

void CyILO_SetSource(uint8 source)
Description: Sets the source of the clock output from the ILO block.
Parameters: source: One of the three available ILO output sources

Value Define Source

0 CY_ILO_SOURCE_100K ILO 100 KHz
1 CY_ILO_SOURCE_33K ILO 33 KHz
2 CY_ILO_SOURCE_1K ILO 1 KHz

Return Value: None

uint8 CyILO_SetPowerMode(uint8 mode)
Description: Sets the power mode used by the ILO during power down. Allows for lower power

down power usage resulting in a slower startup time.
Parameters: mode:

Value Define Description

0 CY_ILO_FAST_START Faster start-up, internal bias left on when
powered down.

1 CY_ILO_SLOW_START Slower start-up, internal bias off when
powered down.

Return Value: Previous power mode

void CyXTAL_32KHZ_Start()
Description: Enables the 32 KHz Crystal Oscillator.
Parameters: None

Return Value: None



Clocking

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 26

void CyXTAL_32KHZ_Stop()
Description: Disables the 32 KHz Crystal Oscillator.
Parameters: None

Return Value: None

uint8 CyXTAL_32KHZ_ReadStatus()
Description: Reads the two status bits for the 32 KHz oscillator.
Parameters: None

Return Value: Status

Value Define Source

0x20 CY_XTAL32K_ANA_STAT Analog measurement
1: Stable
0: Not stable

0x10 CY_XTAL32K_DIG_STAT Digital measurement (Requires the
33 KHz ILO to make this measurement)
1: Stable
0: Not stable

uint8 CyXTAL_32KHZ_SetPowerMode(uint8 mode)
Description: Sets the power mode for the 32 KHz oscillator used during sleep mode. Allows for

lower power during sleep when there are fewer sources of noise. During active
mode the oscillator is always run in high power mode.

Parameters: mode:
 0: High power mode
 1: Low power mode during sleep

Return Value: Previous power mode



Clocking

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 27

uint8 CyXTAL_Start(uint8 wait)
Description: Enables the MHz crystal. Waits until the XERR bit is low (no error) for 1 ms or

until the number of milliseconds specified by the wait parameter has expired.
Parameters: wait: Valid range [0-255]. This is the timeout value in milliseconds. The

appropriate value is crystal specific.
Return Value: Status

CYRET_SUCCESS - Completed successfully
CYRET_TIMEOUT - Timeout occurred without detecting a low value on XERR.

Side Effects and
Restrictions:

If wait is enabled (non-zero wait):
Uses the Fast Time Wheel to time the wait. Any other use of the Fast Time Wheel
will be stopped during the period of this function and then restored.
Uses the 100 KHz ILO. If not enabled, this function will enable the 100 KHz ILO
for the period of this function.
No changes to the setup of the ILO, Fast Time Wheel, Central Time Wheel or
Once Per Second interrupt may be made by interrupt routines during the period of
this function. The current operation of the ILO, Central Time Wheel and Once Per
Second interrupt are maintained during the operation of this function provided the
reading of the Power Manager Interrupt Status Register is only done using the
CyPMReadStatus() function.

void CyXTAL_Stop()
Description: Disables the megahertz crystal oscillator.
Parameters: None

Return Value: None

void CyXTAL_EnableErrStatus()
Description: Enables the generation of the XERR status bit for the megahertz crystal.
Parameters: None

Return Value: None

void CyXTAL_DisableErrStatus()
Description: Disables the generation of the XERR status bit for the megahertz crystal.
Parameters: None

Return Value: None

uint8 CyXTAL_ReadStatus()
Description: Reads the XERR status bit for the megahertz crystal. This status bit is a sticky

clear on read value.
Parameters: None

Return Value: Status: 0: No error, 1: Error



Clocking

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 28

void CyXTAL_EnableFaultRecovery()
Description: Enables the fault recovery circuit which will switch to the IMO in the case of a fault

in the megahertz crystal circuit. The crystal must be up and running with the
XERR bit at 0, before calling this function to prevent immediate fault switchover.

Parameters: None
Return Value: None

void CyXTAL_DisableFaultRecovery()
Description: Disables the fault recovery circuit which will switch to the IMO in the case of a

fault in the megahertz crystal circuit.
Parameters: None

Return Value: None

void CyXTAL_SetStartup(uint8 setting)
Description: Sets the startup settings for the crystal.
Parameters: setting: Valid range [0-31]. Value is dependent on the frequency and quality of the

crystal being used. Refer to the TRM for appropriate values for a specific crystal.
Return Value: None

void CyXTAL_SetFbVoltage(uint8 setting)
Description: For PSoC 3 ES3 devices only, this function sets the feedback reference voltage

to use for the crystal circuit.
Parameters: setting: Valid range [0-15]. Refer to the TRM for details on the mapping of the

setting value to specific voltages.
Return Value: None

Side Effects and
Restrictions:

The feedback reference voltage must be greater than the watchdog reference
voltage.

void CyXTAL_SetWdVoltage(uint8 setting)
Description: For PSoC 3 ES3 devices only, this function sets the reference voltage used by

the watchdog to detect a failure in the crystal circuit.
Parameters: setting: Valid range [0-7]. Refer to the TRM for details on the mapping of the

setting value to specific voltages.
Return Value: None

Side Effects and
Restrictions:

The feedback reference voltage must be greater than the watchdog reference
voltage.



PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 29

4 Power Management

There is a full range of power modes supported by PSoC devices to control power consumption and the
amount of available resources. Both PSoC 3 and PSoC 5 devices support the following power modes (in
order of high to low power consumption): Active, Alternate Active, Sleep, and Hibernate.

Note PSoC 5 will not go into low power modes while the debugger is running.

Note For PSoC 3 and PSoC 5, the power manager will not put the device into a low power state if the
system performance controller (SPC) is executing a command. The device will go into low power mode
after the SPC completes command execution.

The IMO value must be 12 MHz before entering Sleep and Hibernate modes. The IMO frequency is set to
12 MHz just before entering the specified low power mode (without correcting the number of wait cycles
for the flash). The IMO frequency is restored immediately on wakeup. All pending interrupts should be
cleared before the device is put into low power mode, even if it is masked.

Clock Configuration
There are a few device configuration requirements for proper low power mode entry and wakeup.

 The clock system should be prepared before entering Sleep and Hibernate mode to ensure that it
will switch between Active modes and low power modes as expected.

 The CyPmSaveClocks() and CyPmRestoreClocks() functions are responsible for preparing clock
configuration before entering low power mode and after waking up to Active mode, respectively.
In general, CyPmSaveClocks() saves the configuration and sets the requirements for low power
mode entry. CyPmRestoreClocks() restores the clock configuration to its original state.

 The IMO is required to be the source for the Master clock. So, the IMO clock value is set
corresponding to the "Enable Fast IMO During Startup" option on the Design-Wide Resources
System Editor. If this option is enabled, the IMO clock frequency is set to 48 MHz; otherwise, is
set to 12 MHz.
Note The IMO clock frequency is always set to 12 MHz on PSoC 5. The PLL and MHz ECO are
turned off when the Master clock is sourced by IMO.

 The Bus and Master clock dividers are set to a divide-by-one value and the new value of flash
wait cycles is set to match the new value of the CPU frequency. Refer to the description of the
CyFlash_SetWaitCycles() function for more information.

The 1 KHz ILO must be enabled for all devices for correct operation in Sleep and Hibernate low power
modes. For PSoC 3 ES3 devices, the 1 KHz ILO is used to measure the Hibernate/Sleep regulator
settling time after a reset. During this time, the system ignores requests to enter these modes. The hold-
off delay is measured using rising edges of the 1 kHz ILO. The terminal count is set by the Sleep
Regulator Trim Register.

Caution Do not modify this register.



Power Management

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 30

For PSoC 5 devices, an interrupt is required for the CPU to wake up. The Power Management
implementation assumes that wakeup time is configured with a separate component (component-based
wakeup time configuration) for an interrupt to be issued on terminal count. For more information, refer to
the following section.

Wakeup Time Configuration
There are three timers that can wake up a device from low power mode: Central Time Wheel (CTW), Fast
Timer Wheel (FTW) and one pulse per second (One PPS). Refer to the device TRM and datasheet for
more information on these timers.

There are two ways of configuring wakeup time:

 Parameter-based wakeup time configuration is done by calling the CyPmSleep() and
CyPmAltAct() functions with desired parameters. This configuration method is available only for
the PSoC 3 devices.

 Component-based wakeup time configuration. The CTW wakeup interval is configured with the
Sleep Timer component. The one second interval is configured with the RTC component.

There is no wakeup time configuration available for the Hibernate mode.

It is important to keep in mind that it is only guaranteed that the first CTW and FTW intervals will be less
than specified. To make subsequent intervals to have nominal values, the corresponding timer is enabled
by the CyPmSleep() and CyPmAltAct() functions, and the timer left enabled. Note that some APIs can
also use this timer. This can cause the timer to always be enabled (the timer interval can be changed only
if the corresponding timer is disabled) before low power mode entry and hence the wakeup interval will
always be less than expected.

The CyPmReadStatus() function must be called just after wakeup with a corresponding parameter (for
example, with CY_PM_CTW_INT if the device is configured to wake up on CTW) to clear interrupt status
bits.

When CTW is used as a wakeup timer, the CyPmReadStatus() function must always be called (when
wakeup is configured in a parameter or component based method) after wakeup to clear the CTW
interrupt status bit. It is required for this function to be called within 1 ms (1 clock cycle of the ILO) after
the CTW event occurred.

Wakeup Source Configuration
For the PSoC 3 ES3 device, you can configure which wakeup source may wake up the device from
Alternate Active and Sleep low power modes. For PSoC 5 and PSoC 3 ES2 silicon, the wakeup source is
not selectable. In this case, the wakeup source argument is ignored and any of the available wakeup
sources will wake the device. For PSoC 5 silicon, the CTW is the only supported wakeup source from
sleep.

PSoC 3 Alternate Active Mode Specific Issues
 Any interrupt, whether it is enabled at the interrupt controller or not, will wake the device from

Alternate Active power mode.

 The edge detector is also bypassed, so the wakeup source is always level triggered.

 Directly connected DMA interrupts will not wake from this mode. They must be routed through the
DSI in order to generate a wakeup condition.



Power Management

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 31

APIs

void CyPmSaveClocks()
Description: This function is called in preparation for entering sleep or hibernate low power

modes. Saves all state of the clocking system that doesn’t persist during
sleep/hibernate or that needs to be altered in preparation for sleep/hibernate.
Shuts down all the digital and analog clock dividers. Switches the master clock
over to the IMO and shuts down the PLL and MHz Crystal. The IMO frequency is
set to either 12 MHz or 48 MHz to match the Design-Wide Resources System
Editor "Enable Fast IMO During Startup" setting. The ILO and 32 KHz oscillators
are not impacted. The current Flash wait state setting is saved and the Flash wait
state setting is set for the current IMO speed.

Note If the Master Clock source is routed through the DSI inputs, then it must be
set manually to another source before using the CyPmSaveClocks() /
CyPmRestoreClocks() functions.

Parameters: None
Return Value: None

Side Effects and
Restrictions

All peripheral clocks will be off after this API method call.

void CyPmRestoreClocks()
Description: Restores any state that was preserved by the last call to CyPmSaveClocks. The

Flash wait state setting is also restored.

Note If the Master Clock source is routed through the DSI inputs, then it must be
set manually to another source before using the CyPmSaveClocks() /
CyPmRestoreClocks() functions.

PSoC 3 ES3: The merge region could be used to process state when the
megahertz crystal is not ready after the hold-off timeout.

PSoC 5: The megahertz crystal is given up to 130 ms to stabilize. Its readiness is
not verified after the hold-off timeout.

Parameters: None
Return Value: None



Power Management

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 32

void CyPmAltAct(uint16 wakeupTime, uint16 wakeupSource)
Description: Puts the part into the Alternate Active (Standby) state. The Alternate Active state

can allow for any of the capabilities of the device to be active, but the operation of
this function is dependent on the CPU being disabled during the Alternate Active
state. The configuration code and the component APIs will configure the template
for the Alternate Active state to be the same as the Active state with the exception
that the CPU will be disabled during Alternate Active.
Note Before calling this function, you must manually configure the power mode of
the source clocks for the timer that is used as the wakeup timer.
PSoC 3: Before switching to Alternate Active, if a wakeupTime other than NONE
is specified, then the appropriate timer state is configured as specified with the
interrupt for that timer disabled. The wakeup source will be the combination of the
values specified in the wakeupSource and any timer specified in the wakeupTime
argument. Once the wakeup condition is satisfied, then all saved state is restored
and the function returns in the Active state.
Note If the wakeupTime is made with a different value, the period before the
wakeup occurs can be significantly shorter than the specified time. If the next call
is made with the same wakeupTime value, then the wakeup will occur the
specified period after the previous wakeup occurred.
If a wakeupTime other than NONE is specified, then upon exit the state of the
specified timer will be left as specified by wakeupTime with the timer enabled and
the interrupt disabled. If the CTW, FTW or One PPS is already configured for
wakeup, for example with the SleepTimer or RTC components, then specify
NONE for the wakeupTime and include the appropriate source for wakeupSource.
PSoC 5: Neither parameter is used for PSoC 5. The device will go into Alternate
Active mode until an enabled interrupt occurs.

Parameters: wakeupTime: Specifies a timer wakeup source and the frequency of that source.
For PSoC 5 this parameter is ignored.

Value Define Time

0 PM_ALT_ACT_TIME_NONE None
1 PM_ALT_ACT_TIME_ONE_PPS One PPS: 1 second
2 PM_ALT_ACT_TIME_CTW_2MS CTW: 2 ms
3 PM_ALT_ACT_TIME_CTW_4MS CTW: 4 ms
4 PM_ALT_ACT_TIME_CTW_8MS CTW: 8 ms
5 PM_ALT_ACT_TIME_CTW_16MS CTW: 16 ms
6 PM_ALT_ACT_TIME_CTW_32MS CTW: 32 ms
7 PM_ALT_ACT_TIME_CTW_64MS CTW: 64 ms
8 PM_ALT_ACT_TIME_CTW_128MS CTW: 128 ms
9 PM_ALT_ACT_TIME_CTW_256MS CTW: 256 ms
10 PM_ALT_ACT_TIME_CTW_512MS CTW: 512 ms
11 PM_ALT_ACT_TIME_CTW_1024MS CTW: 1024 ms
12 PM_ALT_ACT_TIME_CTW_2048MS CTW: 2048 ms
13 PM_ALT_ACT_TIME_CTW_4096MS CTW: 4096 ms



Power Management

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 33

CyPmAltAct (Continued)
Parameters: wakeupTime (continued): Specifies a timer wakeup source and the frequency of

that source. For PSoC 5 this parameter is ignored.

Value Define Time

14 - 269 PM_ALT_ACT_TIME_FTW(1-256) FTW: 10 µs to 2.56 ms
The PM_ALT_ACT_TIME_FTW() macro takes an argument that specifies how
many increments of 10 µs to delay. For PSoC 3 ES2, the valid range of values is 1
to 32. For PSoC 3 ES3 silicon the valid range of values is 1 to 256.
wakeupSource: Specifies a bitwise mask of wakeup sources. In addition, if a
wakeupTime has been specified, the associated timer will be included as a
wakeup source. The wakeup source configuration is restored before function exit.
For PSoC 5 this parameter is ignored.

Value Define Source

0 PM_ALT_ACT_SRC_NONE None
1 PM_ALT_ACT_SRC_COMPARATOR0 Comparator 0
2 PM_ALT_ACT_SRC_COMPARATOR1 Comparator 1
4 PM_ALT_ACT_SRC_COMPARATOR2 Comparator 2
8 PM_ALT_ACT_SRC_COMPARATOR3 Comparator 3
16 PM_ALT_ACT_SRC_INTERRUPT Interrupt
64 PM_ALT_ACT_SRC_PICU PICU
128 PM_ALT_ACT_SRC_I2C I2C
512 PM_ALT_ACT_SRC_BOOSTCONVERTER Boost Converter
1024 PM_ALT_ACT_SRC_FTW Fast Time Wheel
2048* PM_ALT_ACT_SRC_CTW Central Time Wheel
2048* PM_ALT_ACT_SRC_ONE_PPS One PPS
4096 PM_ALT_ACT_SRC_LCD LCD

Note CTW and One PPS wakeup signals are in the same mask bit.
When specifying a Comparator as the wakeupSource, use an instance specific
define that will track with the specific comparator for that instance. As an example,
for a Comparator instance named "MyComp" the value to OR into the mask is:
MyComp_ctComp__CMP_MASK.
When CTW, FTW, or One PPS is used as a wakeup source, the
CyPmReadStatus function must be called upon wakeup, with the corresponding
parameter. Refer to the CyPmReadStatus API for more information.

Return Value: None
Side Effects and

Restrictions:
For PSoC 3 ES2 and PSoC 5 silicon, the wakeup source is not selectable. In this
case the wakeupSource argument is ignored and any of the available wakeup
sources will wake the device.
If a wakeupTime other than NONE is specified, then upon exit the state of the
specified timer will be left as specified by wakeupTime with the timer enabled and
the interrupt disabled. Also, the ILO 1 KHz (if CTW timer is used as wakeup time)
or ILO 100 KHz (if FTW timer is used as wakeup time) will be left started.



Power Management

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 34

void CyPmSleep(uint8 wakeupTime, uint16 wakeupSource)
Description: Puts the part into the Sleep state.

Note Before calling this function, you must manually configure the power mode of
the source clocks for the timer that is used as wakeup timer.

PSoC 3: Before switching to Sleep, if a wakeupTime other than NONE is specified, then
the appropriate timer state is configured as specified with the interrupt for that
timer disabled. The wakeup source will be the combination of the values specified
in the wakeupSource and any timer specified in the wakeupTime argument. Once
the wakeup condition is satisfied, then all saved state is restored and the function
returns in the Active state.
Note If the wakeupTime is made with a different value, the period before the
wakeup occurs can be significantly shorter than the specified time. If the next call
is made with the same wakeupTime value, then the wakeup will occur the
specified period after the previous wakeup occurred.
If a wakeupTime other than NONE is specified, then upon exit the state of the
specified timer will be left as specified by wakeupTime with the timer enabled and
the interrupt disabled. If the CTW or One PPS is already configured for wakeup,
for example with the SleepTimer or RTC components, then specify NONE for the
wakeupTime and include the appropriate source for wakeupSource.

PSoC 5: Neither parameter to this function is used for PSoC 5. The device will go into
Sleep mode until it is woken by an interrupt from the Central Time Wheel (CTW).
The CTW must already be configured to generate an interrupt. It is configured
using the SleepTimer component. Only the CTW can be used to wake the device
from sleep mode. This function automatically disables other interrupt sources and
then restores them after the device is woken by the CTW.
The duration of sleep needs to be controlled so that the device doesn't wake up
too soon after going to sleep or remain asleep for too long. Reliable sleep times
of between 1ms and 8ms can be supported. This requirement is satisfied with
CTW settings of 4, 8 or 16 ms. To control the sleep time the CTW is reset
automatically just before putting the device to sleep. The resulting wakeup time is
half the duration programmed into the CTW with an uncertainty of 1 ms due to the
arrival time of the first ILO clock edge. For example, the setting of 4 ms will result
in a sleep time between 1 ms and 2 ms.

Parameters: wakeupTime: Specifies a timer wakeup source and the frequency of that source.
For PSoC 5, this parameter is ignored.

Value Define Time

0 PM_SLEEP_TIME_NONE None
1 PM_SLEEP_TIME_ONE_PPS One PPS: 1 second
2 PM_SLEEP_TIME_CTW_2MS CTW: 2 ms
3 PM_SLEEP_TIME_CTW_4MS CTW: 4 ms
4 PM_SLEEP_TIME_CTW_8MS CTW: 8 ms
5 PM_SLEEP_TIME_CTW_16MS CTW: 16 ms
6 PM_SLEEP_TIME_CTW_32MS CTW: 32 ms
7 PM_SLEEP_TIME_CTW_64MS CTW: 64 ms
8 PM_SLEEP_TIME_CTW_128MS CTW: 128 ms
9 PM_SLEEP_TIME_CTW_256MS CTW: 256 ms
10 PM_SLEEP_TIME_CTW_512MS CTW: 512 ms



Power Management

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 35

CyPmSleep (Continued)
Parameters: wakeupTime (continued)

Value Define Time

11 PM_SLEEP_TIME_CTW_1024MS CTW: 1024 ms
12 PM_SLEEP_TIME_CTW_2048MS CTW: 2048 ms
13 PM_SLEEP_TIME_CTW_4096MS CTW: 4096 ms

wakeupSource: Specifies a bitwise mask of wakeup sources. In addition, if a
wakeupTime has been specified, the associated timer will be included as a
wakeup source. The wakeup source configuration is restored before function exit.
For PSoC 5 this parameter is ignored.

Value Define Source

0 PM_SLEEP_SRC_NONE None
1 PM_SLEEP_SRC_COMPARATOR0 Comparator 0
2 PM_SLEEP_SRC_COMPARATOR1 Comparator 1
4 PM_SLEEP_SRC_COMPARATOR2 Comparator 2
8 PM_SLEEP_SRC_COMPARATOR3 Comparator 3
64 PM_SLEEP_SRC_PICU PICU
128 PM_SLEEP_SRC_I2C I2C
512 PM_SLEEP_SRC_BOOSTCONVERTER Boost Converter
2048* PM_SLEEP_SRC_CTW Central Time Wheel
2048* PM_SLEEP_SRC_ONE_PPS One PPS
4096 PM_SLEEP_SRC_LCD LCD

Note CTW and One PPS wakeup signals are in the same mask bit. For PSoC 5,
these are in a different bit (value 1024).
When specifying a Comparator as the wakeupSource, use an instance specific
define that will track with the specific comparator for that instance. As an example
for a Comparator instance named "MyComp" the value to OR into the mask is:
MyComp_ctComp__CMP_MASK.
When CTW or One PPS is used as a wakeup source, the CyPmReadStatus
function must be called upon wakeup, with the corresponding parameter. Refer to
the CyPmReadStatus API for more information.

Return Value: None
Side Effects and

Restrictions:
If a wakeupTime other than NONE is specified, then upon exit the state of the
specified timer will be left as specified by wakeupTime with the timer enabled and
the interrupt disabled. Also, the ILO 1 KHz (if CTW timer is used as wake up time)
will be left started.

PSoC 3 ES2 silicon has a defect that causes connections to several analog
resources to be unreliable when the device is placed in a low power mode. refer
to the silicon errata for details.

The 1 kHz ILO clock is expected to be enabled for PSoC3 ES3 silicon to measure
Hibernate/Sleep regulator settling time after a reset. The hold-off delay is
measured using rising edges of the 1 kHz ILO.



Power Management

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 36

void CyPmHibernate()
Description: Puts the part into the Hibernate state.

PSoC 3: Before switching to Hibernate, the current status of the PICU wakeup
source bit is saved and then set. This configures the device to wake up from the
PICU. Make sure you have at least one pin configured to generate a PICU
interrupt. For pin Px.y, the register "PICU_INTTYPE_PICUx_INTTYPEy" controls
the PICU behavior. In the TRM, this register is "PICU[0..15]_INTTYPE[0..7]." In
the Pins component datasheet, this register is referred to as the IRQ option. Once
the wakeup occurs, the PICU wakeup source bit is restored and the PSoC returns
to the Active state.
PSoC 5: The only method supported for waking up from the Hibernate state is a
hardware reset of the device. PICU interrupt sources are automatically disabled
by this function before putting the device into the Hibernate state.

Parameters: None
Return Value: None

Side Effects and
Restrictions:

Applications must wait 20 µs before re-entering hibernate or sleep after waking
up from hibernate. The 20 µs allows the sleep regulator time to stabilize before
the next hibernate / sleep event occurs. The 20 µs requirement begins when the
device wakes up. There is no hardware check that this requirement is met. The
specified delay should be done on ISR entry.

After wakeup PICU interrupt occurs, the Pin_ClearInterrupt() function (where
"Pin" is the instance name of the Pins component) must be called to clear the
latched pin events. This allows proper Hibernate mode entry and enables
detection of future events.

PSoC 3 ES2 silicon has a defect that causes connections to several analog
resources to be unreliable when the device is placed in a low power mode. Refer
to the silicon errata for details.

The 1 kHz ILO clock is expected to be enabled for PSoC3 ES3 silicon to measure
Hibernate/Sleep regulator settling time after a reset. The hold-off delay is
measured using rising edges of the 1 kHz ILO.



Power Management

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 37

uint8 CyPmReadStatus(uint8 mask)
Description: Manages the Power Manager Interrupt Status Register. This register has the

interrupt status for the one pulse per second, Central Time Wheel, and Fast Time
Wheel timers. This hardware register clears on read. To allow for only clearing the
bits of interest and preserving the other bits, this function uses a shadow register
that retains the state. This function reads the status register and ORs that value
with the shadow register. That is the value that is returned. Then the bits in the
mask that are set are cleared from this value and written back to the shadow
register.

Note You must call this function within 1 ms (1 clock cycle of the ILO) after a
CTW event has occurred.

Parameters: mask: Bits in the shadow register to clear

Value Define Source

1 CY_PM_FTW_INT Fast Time Wheel
2 CY_PM_CTW_INT Central Time Wheel
4 CY_PM_ONEPPS_INT One Pulse Per Second

Return Value: Status. Same enumerated bit values as used for the mask parameter.

Instance Low Power APIs
Most components have an instance-specific set of low power APIs that allow you to put the component
into its low power state (sleep or hibernate). These functions are listed below generically. Refer to the
individual data sheet for specific information regarding register retention information if applicable.

void `=instance_name`_Sleep (void)
Description: The _Sleep() function checks to see if the component is enabled and saves that

state. Then it calls the _Stop() function and calls _SaveConfig() function to save the
user configuration.
Call the _Sleep() function before calling the CyPmSleep() or the CyPmHibernate()
function.

Parameters: None
Return Value: None
Side Effects: None

void `=instance_name`_Wakeup (void)
Description: The _Wakeup() function calls the _RestoreConfig() function to restore the user

configuration. If the component was enabled before the _Sleep() function was
called, the _Wakeup() function will re-enable the component.

Parameters: None
Return Value: None
Side Effects: Calling the _Wakeup() function without first calling the _Sleep() or _SaveConfig()

function may produce unexpected behavior.



Power Management

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 38

void `=instance_name`_SaveConfig(void)
Description: This function saves the component configuration. This will save non-retention

registers. This function will also save the current component parameter values, as
defined in the Configure dialog or as modified by appropriate APIs. This function is
called by the _Sleep() function.

Parameters: None
Return Value: None
Side Effects: None

void `=instance_name`_RestoreConfig(void)
Description: This function restores the component configuration. This will restore non-retention

registers. This function will also restore the component parameter values to what
they were prior to calling the _Sleep() function.

Parameters: None
Return Value: None
Side Effects: Calling this function without first calling the _Sleep() or _SaveConfig() function may

produce unexpected behavior.



PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 39

5 Interrupts

The APIs in this chapter apply to all architectures except as noted. Refer also to the Interrupt component
datasheet for more information about interrupts.

APIs

CyGlobalIntEnable
Description: Macro statement that enables interrupts using the global interrupt mask.

CyGlobalIntDisable
Description: Macro statement that disables interrupts using the global interrupt mask.

uint32 CyDisableInts()
Description: Disables the interrupt enable for each interrupt.
Parameters: None

Return Value: 32-bit mask of interrupts previously enabled

void CyEnableInts(uint32 mask)
Description: Enables all interrupts specified in the 32-bit mask.
Parameters: mask: 32-bit mask of interrupts to enable

Return Value: None

Note Interrupt service routines must follow the policy that they restore the CYDEV_INTC_CSR_EN
register bits and interrupt enable state (EA) to the way they were found on entry. The ISR does not need
to do anything special as long as it uses properly nested CyEnterCriticalSection() and
CyExitCriticalSection() function calls.

void CyIntEnable(uint8 number)
Description: Enables the specified interrupt number.
Parameters: number: Interrupt number. Valid range: [0-31]

Return Value: None

Note Interrupt service routines must follow the policy that they restore the CYDEV_INTC_CSR_EN
register bits and interrupt enable state (EA) to the way they were found on entry. The ISR does not need



Interrupts

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 40

to do anything special as long as it uses properly nested CyEnterCriticalSection() and
CyExitCriticalSection() function calls.

void CyIntDisable(uint8 number)
Description: Disables the specified interrupt number.
Parameters: number: Interrupt number. Valid range: [0-31]

Return Value: None

Note Interrupt service routines must follow the policy that they restore the CYDEV_INTC_CSR_EN
register bits and interrupt enable state (EA) to the way they were found on entry. The ISR does not need
to do anything special as long as it uses properly nested CyEnterCriticalSection() and
CyExitCriticalSection() function calls.

uint8 CyIntGetState(uint8 number)
Description: Gets the enable state of the specified interrupt number.
Parameters: number: Interrupt number. Valid range: [0-31]

Return Value: Enable status: 1 if enabled, 0 if disabled

cyisraddress CyIntSetVector(uint8 number, cyisraddress address)
Description: Sets the interrupt vector of the specified interrupt number.
Parameters: number: Interrupt number. Valid range: [0-31]

address: Pointer to an interrupt service routine
Return Value: Previous interrupt vector value

cyisraddress CyIntGetVector(uint8 number)
Description: Gets the interrupt vector of the specified interrupt number.
Parameters: number: Interrupt number. Valid range: [0-31]

Return Value: Interrupt vector value

cyisraddress CyIntSetSysVector(uint8 number, cyisraddress address)
Description: This function applies to ARM based processors only and therefore does not apply

to the PSoC 3 device. It sets the interrupt vector of the specified exception. These
exceptions in the ARM architecture operate similar to user interrupts, but are
specified by the system architecture of the processor. The number of each
exception is fixed. Note that the numbering of these exceptions is separate from
the numbering used for user interrupts.

Parameters: number: Exception number. Valid range: [0-15].
address: Pointer to an interrupt service routine

Return Value: Previous interrupt vector value



Interrupts

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 41

cyisraddress CyIntGetSysVector(uint8 number)
Description: This function applies to ARM based processors only and therefore does not apply

to the PSoC 3 device. It gets the interrupt vector of the specified exception. These
exceptions in the ARM architecture operate similar to user interrupts, but are
specified by the system architecture of the processor. The number of each
exception is fixed. Note that the numbering of these exceptions is separate from
the numbering used for user interrupts.

Parameters: number: Exception number. Valid range: [0-15].
Return Value: Interrupt vector value

void CyIntSetPriority(uint8 number, uint8 priority)
Description: Sets the priority of the specified interrupt number.
Parameters: number: Interrupt number. Valid range: [0-31]

priority: Interrupt priority. 0 is the highest priority. Valid range: [0-7]
Return Value: None

uint8 CyIntGetPriority(uint8 number)
Description: Gets the priority of the specified interrupt number.
Parameters: number: Interrupt number. Valid range: [0-31]

Return Value: Interrupt priority

void CyIntSetPending(uint8 number)
Description: Forces the specified interrupt number to be pending.
Parameters: number: Interrupt number. Valid range: [0-31]

Return Value: None

void CyIntClearPending(uint8 number)
Description: Clears any pending interrupt for the specified interrupt number.
Parameters: number: Interrupt number. Valid range: [0-31]

Return Value: None



Interrupts

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 42



PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 43

6 Cache

PSoC 3 Cache Functionality
The PSoC 3 cache is enabled by default. It can be disabled using the PSoC Creator Design-Wide
Resources System Editor. There are no defines, functions or macros for cache handling for PSoC 3.

PSoC 5 Cache Functionality

void CyFlushCache()
Description: Flushes the PSoC 5 cache by invalidating all entries.
Parameters: None

Return Value: None



Cache

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 44



PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 45

7 Pins

In addition to the functionality provided for pins as part of the Pins component, a library of pin macros is
provided in the cypins.h file. These macros all make use of the port pin configuration register that is
available for every pin on the device. The address of that register is provided in the cydevice_trm.h file.
Each of these pin configuration registers is named:

CYREG_PRTx_PCy

where x is the port number and y is the pin number within the port.

APIs

uint8 CyPins_ReadPin(uint16/uint32 pinPC)
Description: Reads the current value on the pin (pin state, PS).
Parameters: pinPC: Port pin configuration register (uint16 PSoC 3 / uint32 PSoC 5)

Return Value: Pin state
0: Logic low value
Non-0: Logic high value

void CyPins_SetPin(uint16/uint32 pinPC)
Description: Set the output value for the pin (data register, DR) to a logic high. Note that this

only has an effect for pins configured as software pins that are not driven by
hardware.

Parameters: pinPC: Port pin configuration register (uint16 PSoC 3 / uint32 PSoC 5)
Return Value: None

void CyPins_ClearPin(uint16/uint32 pinPC)
Description: Clear the output value for the pin (data register, DR) to a logic low. Note that this

only has an effect for pins configured as software pins that are not driven by
hardware.

Parameters: pinPC: Port pin configuration register (uint16 PSoC 3 / uint32 PSoC 5)
Return Value: None



Pins

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 46

void CyPins_SetPinDriveMode(uint16/uint32 pinPC, uint8 mode)
Description: Sets the drive mode for the pin (DM).
Parameters: pinPC: Port pin configuration register (uint16 PSoC 3 / uint32 PSoC 5)

mode: Desired drive mode
Define Source

PIN_DM_ALG_HIZ Analog HiZ
PIN_DM_DIG_HIZ Digital HiZ
PIN_DM_RES_UP Resistive pull up
PIN_DM_RES_DWN Resistive pull down
PIN_DM_OD_LO Open drain - drive low
PIN_DM_OD_HI Open drain - drive high
PIN_DM_STRONG Strong CMOS Output
PIN_DM_RES_UPDWN Resistive pull up/down

Return Value: None

uint8 CyPins_ReadPinDriveMode(uint16/uint32 pinPC)
Description: Reads the drive mode for the pin (DM).
Parameters: pinPC: Port pin configuration register (uint16 PSoC 3 / uint32 PSoC 5)

Return Value: Current drive mode for the pin
Define Source

PIN_DM_ALG_HIZ Analog HiZ
PIN_DM_DIG_HIZ Digital HiZ
PIN_DM_RES_UP Resistive pull up
PIN_DM_RES_DWN Resistive pull down
PIN_DM_OD_LO Open drain - drive low
PIN_DM_OD_HI Open drain - drive high
PIN_DM_STRONG Strong CMOS Output
PIN_DM_RES_UPDWN Resistive pull up/down

void CyPins_FastSlew(uint16/uint32 pinPC)
Description: Set the slew rate for the pin to fast edge rate. Note that this only applies for pins in

strong output drive modes, not to resistive drive modes.
Parameters: pinPC: Port pin configuration register (uint16 PSoC 3 / uint32 PSoC 5)

Return Value: None

void CyPins_SlowSlew(uint16/uint32 pinPC)
Description: Set the slew rate for the pin to slow edge rate. Note that this only applies for pins

in strong output drive modes, not to resistive drive modes.
Parameters: pinPC: Port pin configuration register (uint16 PSoC 3 / uint32 PSoC 5)

Return Value: None



PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 47

8 Register Access

A library of macros provides read and write access to the registers of the device. These macros are used
with the defined values made available in the generated cydevice.h, cydevice_trm.h and cyfitter.h files.
Access to registers should be made using these macros and not the functions that are used to implement
the macros. This allows for device independent code generation.

PSoC 3 is an 8-bit architecture, so the processor does not have endianness. However, the compiler for an
8-bit architecture will implement endianness. For PSoC 3, the Keil compiler implements a big endian
(MSB in lowest address) ordering. The PSoC 5 processor architecture uses little endian ordering.

SRAM and Flash storage in both the PSoC 3 and PSoC 5 architectures is done using the endianness of
the architecture and compilers. However, the registers in both these chips are laid out in little endian
order. These macros allow register accesses to match this little endian ordering. If you perform operations
on multi-byte registers without using these macros, you must consider the byte ordering of the specific
architecture. Examples include usage of DMA to transfer between memory and registers, as well as
function calls that are passed an array of bytes in memory.

The PSoC 3 is an 8-bit processor, so all accesses will be done a byte at a time. The PSoC 5 will perform
accesses using the appropriate 8-, 16- and 32-bit accesses. The PSoC 5 does not require these
accesses to be aligned to the width of the transaction.

APIs

uint8 CY_GET_REG8(uint16/uint32 reg)
Description: Reads the 8-bit value from the specified register. For PSoC 3, the address must be

in the lower 64 K address range.
Parameters: reg: Register address (uint16 PSoC 3 / uint32 PSoC 5)

Return Value: Read value

void CY_SET_REG8(uint16/uint32 reg, uint8 value)
Description: Writes the 8-bit value to the specified register. For PSoC 3 the address must be in

the lower 64 K address range.
Parameters: reg: Register address (uint16 PSoC 3 / uint32 PSoC 5)

value: Value to write
Return Value: None



Register Access

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 48

uint16 CY_GET_REG16(uint16/uint32 reg)
Description: Reads the 16-bit value from the specified register. This macro implements the byte

swapping required for proper operation. For PSoC 3 the address must be in the
lower 64 K address range.

Parameters: reg: Register address (uint16 PSoC 3 / uint32 PSoC 5)
Return Value: Read value

void CY_SET_REG16(uint16/uint32 reg, uint16 value)
Description: Writes the 16-bit value to the specified register. This macro implements the byte

swapping required for proper operation. For PSoC 3 the address must be in the
lower 64 K address range.

Parameters: reg: Register address (uint16 PSoC 3 / uint32 PSoC 5)
value: Value to write

Return Value: None

uint32 CY_GET_REG24(uint16/uint32 reg)
Description: Reads the 24-bit value from the specified register. This macro implements the byte

swapping required for proper operation. For PSoC 3 the address must be in the
lower 64 K address range.

Parameters: reg: Register address (uint16 PSoC 3 / uint32 PSoC 5)
Return Value: Read value

void CY_SET_REG24(uint16/uint32 reg, uint32 value)
Description: Writes the 24-bit value to the specified register. This macro implements the byte

swapping required for proper operation. For PSoC 3 the address must be in the
lower 64 K address range.

Parameters: reg: Register address (uint16 PSoC 3 / uint32 PSoC 5)
value: Value to write

Return Value: None

uint32 CY_GET_REG32(uint16/uint32 reg)
Description: Reads the 32-bit value from the specified register. This macro implements the byte

swapping required for proper operation. For PSoC 3 the address must be in the
lower 64 K address range.

Parameters: reg: Register address (uint16 PSoC 3 / uint32 PSoC 5)
Return Value: Read value



Register Access

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 49

void CY_SET_REG32(uint16/uint32 reg, uint32 value)
Description: Writes the 32-bit value to the specified register. This macro implements the byte

swapping required for proper operation. For PSoC 3 the address must be in the
lower 64 K address range.

Parameters: reg: Register address (uint16 PSoC 3 / uint32 PSoC 5)
value: Value to write

Return Value: None

uint8 CY_GET_XTND_REG8(uint32 reg)
Description: Reads the 8-bit value from the specified register. Supports the full address space

for PSoC 3, but requires more execution cycles than the standard register get
function. Identical to CY_GET_REG8 for PSoC 5.

Parameters: reg: Register address
Return Value: Read value

void CY_SET_XTND_REG8(uint32 reg, uint8 value)
Description: Writes the 8-bit value to the specified register. Supports the full address space for

PSoC 3, but requires more execution cycles than the standard register set
function. Identical to CY_SET_REG8 for PSoC 5.

Parameters: reg: Register address
value: Value to write

Return Value: None

uint16 CY_GET_XTND_REG16(uint32 reg)
Description: Reads the 16-bit value from the specified register. This macro implements the byte

swapping required for proper operation. Supports the full address space for PSoC
3, but requires more execution cycles than the standard register get function.
Identical to CY_GET_REG16 for PSoC 5.

Parameters: reg: Register address
Return Value: Read value

void CY_SET_XTND_REG16(uint32 reg, uint16 value)
Description: Writes the 16-bit value to the specified register. This macro implements the byte

swapping required for proper operation. Supports the full address space for PSoC
3, but requires more execution cycles than the standard register set function.
Identical to CY_SET_REG16 for PSoC 5.

Parameters: reg: Register address
value: Value to write

Return Value: None



Register Access

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 50

uint32 CY_GET_XTND_REG24(uint32 reg)
Description: Reads the 24-bit value from the specified register. This macro implements the byte

swapping required for proper operation. Supports the full address space for PSoC
3, but requires more execution cycles than the standard register get function.
Identical to CY_GET_REG24 for PSoC 5.

Parameters: reg: Register address
Return Value: Read value

void CY_SET_XTND_REG24(uint32 reg, uint32 value)
Description: Writes the 24-bit value to the specified register. This macro implements the byte

swapping required for proper operation. Supports the full address space for PSoC
3, but requires more execution cycles than the standard register set function.
Identical to CY_SET_REG24 for PSoC 5.

Parameters: reg: Register address
value: Value to write

Return Value: None

uint32 CY_GET_XTND_REG32(uint32 reg)
Description: Reads the 32-bit value from the specified register. This macro implements the byte

swapping required for proper operation. Supports the full address space for PSoC
3, but requires more execution cycles than the standard register get function.
Identical to CY_GET_REG32 for PSoC 5.

Parameters: reg: Register address
Return Value: Read value

void CY_SET_XTND_REG32(uint32 reg, uint32 value)
Description: Writes the 32-bit value to the specified register. This macro implements the byte

swapping required for proper operation. Supports the full address space for PSoC
3, but requires more execution cycles than the standard register set function.
Identical to CY_SET_REG32 for PSoC 5.

Parameters: reg: Register address
value: Value to write

Return Value: None



PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 51

9 DMA

The DMA files provide the API functions for the DMA controller, DMA channels and Transfer Descriptors.
This API is the library version, not the code that is generated when the user places a DMA component on
the schematic. The automatically generated code would use the APIs in this module.

Refer to the DMA component datasheet for more information.



DMA

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 52



PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 53

10 Flash and EEPROM

Flash and EEPROM are programmed using a common set of functions. Refer also to the EEPROM
component datasheet for more information.

Flash and EEPROM are programmed through the system performance controller (SPC) calls. The
Flash/EEPROM specific API abstracts this for simplicity.

Only PSoC 3 parts have error correction codes (ECC) storage. This can be configured to be true ECC or
used for data storage. The most common use for ECC memory as data storage is to store configuration
data which is directly supported by PSoC Creator.

When programming Flash with ECC disabled (available for data storage), there are multiple methods for
writing a row of data:

 the entire row including ECC

 the entire row without ECC

 just the ECC memory.

If ECC memory is used for the storage of configuration data, then ensure you do not overwrite an area of
ECC memory that is being used for configuration data.

The caller must first call the CySetTemp and CySetFlashEEBuffer functions. The temperature is needed
to adjust the write times to the flash for optimal performance. The Buffer is used to store intermediate data
while communicating with the SPC. The SPC is push/pull with a register to send commands to and read
data back from.

Flash or EEPROM can be written to one row at a time by calling the same function "CyWriteRowData".
The first parameter will determine the flash or EEPROM array. The number of Arrays that are flash and
the number of Arrays that are EEPROM are specific to the exact part selected. Check your part to know
which array IDs are valid.

A Flash array has, at most, 64 KB plus ECC bytes. PSoC 3 architecture has one Flash array, the size of
which is 16 KB, 32 KB, or 64 KB plus ECC bytes. Therefore, the only valid array ID is 0x00.

An EEPROM array has, at most, 2 KB. PSoC 3 and PSoC 5 devices have one EEPROM array, the size of
which is 512 bytes, 1 KB, or 2 KB.



Flash and EEPROM

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 54

APIs

cystatus CySetTemp()
Description: Gets the temperature of the die and leaves the result in a static location used by

the Flash and EEPROM writing functions. This function must be called once before
executing a series of Flash / EEPROM writing functions.

Parameters: None
Return Value: Status

Value Description

CYRET_SUCCESS Successful
CYRET_LOCKED Flash / EEPROM writing already in use
CYRET_UNKNOWN Failure

Side Effects and
Restrictions:

Execution of this function takes an extended period of time.
Function doesn’t return until the SPC has returned to an idle state.

cystatus CySetFlashEEBuffer(uint8 *buffer)
Description: Sets the buffer used for temporary storage of a complete row of flash plus

associated ECC used during writes to Flash and EEPROM. This buffer is only
necessary when Flash ECC is disabled.

Parameters: uint8 *buffer: Allocated buffer that is (SIZEOF_FLASH_ROW +
SIZEOF_ECC_ROW) bytes.

Return Value: Status

Value Description

CYRET_SUCCESS Successful
CYRET_LOCKED Flash / EEPROM writing already in use



Flash and EEPROM

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 55

cystatus CyWriteRowFull(uint8 arrayId, uint16 rowAddress, uint8 *rowData,
uint16 rowSize)

Description: Allows a row to be erased and programmed. If the array is a flash array and ECC is
being used for configuration storage, the function expects that both the row data
and the ECC data have been provided as part of rowData.

Parameters: uint8 arrayId: ID of the array to write. The type of write, Flash or EEPROM, is
determined from the array ID. The arrays in the part are sequential starting at the
first ID for the specific memory type.

Type First ID Array Size

Flash FIRST_FLASH_ARRAYID 64 K Bytes
EEPROM FIRST_EE_ARRAYID 2 K Bytes

uint16 rowAddress: Row address within the specified arrayId.

Type Rows per Array Row size in Bytes

Flash (ECC Enabled) 256 SIZEOF_FLASH_ROW (256)
Flash (ECC Disabled) 288 SIZEOF_FLASH_ROW +

SIZEOF_ECC_ROW (288)
EEPROM 128 SIZEOF_EEPROM_ROW (16)

uint8 *rowData: Address of the data to be programmed. The size of this row will be
SIZEOF_FLASH_ROW or SIZEOF_EEPROM_ROW depending on the ‘arrayId’.
Note This cannot be the same buffer passed as SPC buffer
uint16 rowSize: Number of bytes of row data

Return Value: Status

Value Description

CYRET_SUCCESS Successful
CYRET_LOCKED Flash / EEPROM writing already in use
CYRET_CANCELED Command not accepted
Other non-zero Failure



Flash and EEPROM

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 56

cystatus CyWriteRowData(uint8 arrayId, uint16 rowAddress, uint8 *rowData)
Description: Writes a row of Flash or EEPROM. For Flash, the ECC will be written

automatically if ECC is enabled. If ECC is disabled, the current contents of the
ECC memory is maintained.

Parameters: uint8 arrayId: ID of the array to write. The type of write, Flash or EEPROM, is
determined from the array ID. The arrays in the part are sequential starting at the
first ID for the specific memory type.

Type First ID Array Size

Flash FIRST_FLASH_ARRAYID 64K Bytes
EEPROM FIRST_EE_ARRAYID 2K Bytes

uint16 rowAddress: Row address within the specified arrayId.

Type Rows per Array Row size in Bytes

Flash 256 SIZEOF_FLASH_ROW (256)
EEPROM 128 SIZEOF_EEPROM_ROW (16)

uint8 *rowData Array of bytes to write.
Return Value: Status

Value Description

CYRET_SUCCESS Successful
CYRET_LOCKED Flash / EEPROM writing already in use
CYRET_CANCELED Command not accepted
Other non-zero Failure



Flash and EEPROM

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 57

cystatus CyWriteRowConfig(uint8 arrayId, uint16 rowAddress, uint8 *rowData)
Description: Writes the ECC portion of a Flash row. This function is only present when ECC is

disabled and is not being used to store configuration data. This function is only
valid for Flash array IDs (not for EEPROM).

Parameters: arrayId: ID of the array to write. The arrays in the part are sequential starting at
the first ID for the specific memory type.

Type First ID ECC Array Size

Flash FIRST_FLASH_ARRAYID 8 K Bytes

rowAddress: Row address within the specified arrayId.

Type Rows per Array ECC Row size in Bytes

Flash 256 SIZEOF_ECC_ROW (32)

rowData: Array of bytes to write.
Return Value: Status

Value Description

CYRET_SUCCESS Successful
CYRET_LOCKED Flash / EEPROM writing already in use
CYRET_CANCELED Command not accepted
Other non-zero Failure

void CyFlash_Start()
Description: Enables the Flash. By default Flash is enabled.

For PSoC 3 ES2 or earlier and PSoC 5, the same bit controls both EEPROM and
Flash. Starting or stopping either will cause both to be started or stopped.

Parameters: None
Return Value: None

void CyFlash_Stop()
Description: Disables the Flash. This setting is ignored as long as the CPU is currently running.

This will only take effect when the CPU is later disabled.
For PSoC 3 ES2 or earlier and PSoC 5, the same bit controls both EEPROM and
Flash. Starting or stopping either will cause both to be started or stopped.

Parameters: None
Return Value: None



Flash and EEPROM

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 58

void CyFlash_SetWaitCycles(uint8 freq)
Description: Sets the correct number of wait cycles for the flash based on the frequency of

operation of the devices. This function should be called before increasing the clock
frequency. It can optionally be called after lowering the clock frequency in order to
improve CPU performance.

Parameters: freq: Frequency of operation in Megahertz
Return Value: None

void CyEEPROM_Start()
Description: Enables the EEPROM.

For PSoC 3 ES2 or earlier and PSoC 5, the same bit controls both EEPROM and
Flash. Starting or stopping either will cause both to be started or stopped. Also for
those silicon versions, the EEPROM is enabled by default. For later silicon, the
EEPROM is controlled by a separate bit and must be started before it can be
used.

Parameters: None
Return Value: None

void CyEEPROM_Stop()
Description: Disables the EEPROM.

For PSoC 3 ES2 or earlier and PSoC 5, the same bit controls both EEPROM and
Flash. Starting or stopping either will cause both to be started or stopped.

Parameters: None
Return Value: None

void CyEEPROM_ReadReserve()
Description: Request access to the EEPROM for reading and waits until that access is

available. The access to EEPROM is arbitrated between the controller that writes
to the EEPROM and the normal access to read from EEPROM. It is not required to
reserve access to the EEPROM for reading, but if a write is still active and a read
is attempted a fault is generated and the wrong data is returned.

Parameters: None
Return Value: None

void CyEEPROM_ReadRelease()
Description: Releases the read reservation of the EEPROM. If the EEPROM has been

reserved for reading, then it must be released before further writes to the
EEPROM can be performed.

Parameters: None
Return Value: None



PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 59

11 Bootloader System

In PSoC Creator, the bootloader system manages the process of updating the device flash memory with
new application code and/or data ("code"). This is accomplished by the following parts:

 Bootloader component

 Communications component

 Bootloader project, used to create the bootloader component

 Bootloadable project, used to create the code

The following sections describe the various aspects of the bootloader process in greater detail.

Bootloader Component
The bootloader component allows you to update the device flash memory with new code. The bootloader
accepts and executes commands, and passes responses to those commands back to the
communications component. The bootloader collects and arranges the received data and manages the
actual writing of flash through a simple command/status register interface. The bootloader component is
not a typical component. It is not available in the Component Catalog. Instead it is always present, behind
the scenes, if you have a bootloader type project.



Bootloader System

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 60

The following diagram shows how the bootloader works.

Power Up/Startup

Start
Application
Requested?

Came from
Application?

DWR
Wait for

Command
Set?

Set Wait Time
(Forever)

Set Wait Time
(DWR Wait Time)

Valid
Application?

Perform Bootload

Wait for Command

Run Application

CyBtldr_Load()

Request Start
Bootloader

Set Wait Time
(Forever)

Data
Received?

Exit
Bootloader
Command?

Reset

Time Expired?

Request Start
Application

N

Y

N

Run Bootloader

CyBtldr_Start()

Valid
Application?

Process
Command

Y

N

N Y N

Y YN

N

Y Y

Valid
Application?

YY

N

N

Communications Component
The communications component manages the communications protocol to receive commands from an
external system, and passes those commands to the bootloader. It also passes command responses from
the bootloader back to the off-chip system.

Note USB and I2C are the only officially supported communication methods for the bootloader. Refer to
the USBFS or I2C component datasheet as needed for more details about the appropriate communication
method. There is also a Custom option to add bootloader support to any existing communications
component. See "Custom Bootloader Component."



Bootloader System

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 61

You can also create your own bootloader component for any number of communication methods. For
information and instructions on how to do this, refer to the Component Author Guide.

Custom Bootloader Component
You can create custom bootloader components using any desired communication component. Under the
DWR System Editor "IO Component" select the "Custom_Interface" option. See also the "IO Component"
parameter. This allows for implementing the necessary functions in any way necessary in your application
code. The following shows an example of code inserted into the main.c file for an SPI communication
component. For more information about the CyBtldr_ APIs, refer to the Component Author Guide.

void CyBtldrCommStart(void)
{

SPIS_1_Start();
}

void CyBtldrCommStop (void)
{

SPIS_1_Stop();
}

void CyBtldrCommReset(void)
{
}

cystatus CyBtldrCommWrite(uint8* buffer, uint16 size, uint16* count, uint8
timeOut)
{

uint16 i;
cystatus status = CYRET_EMPTY;

uint8 intStatus = CyEnterCriticalSection();

SPIS_1_ClearRxBuffer();
SPIS_1_ClearTxBuffer();

for (i = 0; i < size; i++)
{

SPIS_1_WriteTxData(buffer[i]);
}

CyExitCriticalSection(intStatus);

while (timeOut-- > 0)
{

if ((SPIS_1_ReadTxStatus() & SPIS_1_STS_SPI_DONE) !=
SPIS_1_STS_SPI_DONE)

{
*count = size;
status = CYRET_SUCCESS;
break;

}



Bootloader System

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 62

CyDelay(10);
}

return status;
}

cystatus CyBtldrCommRead (uint8* buffer, uint16 size, uint16* count, uint8
timeOut)
{

uint16 i = 0;
cystatus status = CYRET_EMPTY;

uint8 validData = 0;
uint8 dataByte;

while (timeOut-- > 0)
{

if (SPIS_1_GetRxBufferSize() > 0 && SPIS_1_GetTxBufferSize() == 0)
{

while (!validData && SPIS_1_GetRxBufferSize() > 0)
{

dataByte = SPIS_1_ReadRxData();

validData = (1 == dataByte);
}

if (validData)
{

buffer[0] = dataByte;
i = 1;

}

CyDelay(10);
while (SPIS_1_GetRxBufferSize() > 0)
{

buffer[i++] = SPIS_1_ReadRxData();
}

if (i > 0)
{

while(buffer[--i] != 0x17);
*count = i+1;
status = CYRET_SUCCESS;
break;

}
}
CyDelay(10);

}
return status;

}



Bootloader System

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 63

Bootloader Project Types
In order to implement both a bootloader component and the code, you must create special PSoC Creator
project types: bootloader Project and bootloadable Project.

Bootloader Project

The bootloader component only exists within a bootloader type PSoC Creator design project. When you
create a bootloader project, a bootloader component automatically exists in the project.

There are two types of bootloaders available: the "Standard Bootloader" and the "Dual Application
Bootloader." The "Standard Bootloader" option allows for a single application code, while the "Dual
Application Bootloader" allows two applications to reside in flash. The "Dual Application Bootloader" is
useful for designs that require a guarantee that there is always a valid application that can be run. This
guarantee comes with the limitation that each application has one half of the flash available from what
would have been available for a "Standard Bootloader" project.

You typically complete a bootloader design project by dragging a communications component onto the
schematic, routing the I/O to pins, setting up clocks, etc. A bootloader project with a communications
component implements the basic boot loader function of receiving new code and writing it to flash. You
can add custom functions to a basic bootloader project by dragging other components onto the schematic
or by adding source code.

Bootloadable Project

The bootloadable project is actually the code. It is very similar to a "standard" design project; the project
type can easily be changed between the two during the design phase. The main differences are that a
bootloadable project is always associated with a bootloader project, and a standard project is never
associated with a bootloader project.

A standard project resides in flash starting at address zero. A bootloadable project occupies flash at an
address above zero; the associated bootloader project occupies flash starting at address zero, as shown
in the following:

Standard
Project

Bootloadable
Project

Standard
Bootloader

Dual Application
Bootloader

Bootloadable
Project

(Image 1)

Bootloadable
Project

(Image 2)

Address 0

Meta Data Meta Data (Image 1)
Meta Data (Image 2)



Bootloader System

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 64

Bootloader and Bootloadable Project Functions

The bootloader project performs overall transfer of a bootloadable project, or new code, to the flash via
the bootloader project’s communications component. After the transfer, the processor is always reset. The
bootloader project is also responsible at reset time for testing certain conditions and possibly auto-
initiating a transfer if the bootloadable project is non-existent or is corrupt.

At startup, the bootloader code loads configuration bytes for its own configuration. It must also initialize
the stack and other resources and peripherals to do the transfer. When the transfer is complete, control is
passed to the bootloadable project via a software reset.

The bootloadable project then loads configuration bytes for its own configuration; and re-initializes the
stack and other resources and peripherals for its functions. The bootloadable project may call the
CyBtldr_Load() function in the bootloader project to initiate a transfer (this results in another software
reset).

PSoC Creator Project Output Files

When either project type – bootloader or bootloadable - is built, an output file is created for that project.

In addition, an output file for both projects – a "combination" file – is created when the bootloadable
project is build. This file includes both the bootloader and bootloadable projects. This file is typically used
to facilitate downloading both projects (via JTAG / SWD) to device flash in a production environment.

For bootloader projects the configuration bytes are always stored in the main flash that is occupied by the
bootloader, and never in ECC flash.

Configuration bytes for bootloadable projects may be stored in either main flash or in ECC flash. The
format of the bootloadable project output file is such that when the device has ECC bytes which are
disabled, transfer operations are executed in less time. This is done by interleaving records in the
bootloadable main flash address space with records in the ECC flash address space. The bootloader
takes advantage of this interleaved structure by programming the associated flash row once – the row
contains bytes for both main flash and ECC flash.

Each project has its own checksum. The checksums is included in the output files at project build time.



Bootloader System

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 65

Memory Usage
The following diagram shows the device's flash memory layout for the PSoC 3 and PSoC 5.

Byte 0 Byte 1 Byte L• • • • • • •

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

•
•
•
•
•

Row N

Array 0

Byte 0 Byte 1 Byte L• • • • • • •

Row 1

Row 2

Row 3

•
•
•
•
•
•
•
•
•
•
•
•

Array 1

• • • • • • •

Byte 0 Byte 1 Byte L• • • • • • •

Row 1

Row 2

Row 3

•
•
•
•
•
•
•
•
•
•
•
•

Array M

= 256 or 288 if ECC disabled
= 32, 64, 128, or 256 depending on part
= 1, 2, 3, or 4 depending on part
= Bootloader Portion
= Bootloadable Portion
= Reserved for Metadata

L
N
M

The bootloader project always occupies the bottom N 256-byte blocks of flash. N is set so that there is
enough flash for:

 the vector table for this project, starting at address 0 (except PSoC 3), and

 the bootloader project configuration bytes, and

 the bootloader project code and data, and

 the checksum for the bootloader portion of flash.

Note that the bootloader project configuration bytes are always stored in main flash, never in ECC flash.
The relevant option is removed from the project’s .cydwr file.

The bootloader portion of flash is protected; it can only be overwritten by downloading via JTAG / SWD.

The bootloadable project occupies flash starting at the first 256-byte boundary after the bootloader, and
includes:

 the vector table for the project (except PSoC 3),

 the bootloadable project code and data, and

 64 bytes of data reserved at the very end of the last flash array to store metadata used by both
the bootloader and bootloadable.

The bootloadable project’s configuration bytes may be stored in the same manner as in a standard
project, i.e. in either main flash or in ECC flash, per settings in the project’s .cydwr file.



Bootloader System

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 66

The highest 64-byte block of flash is used as a common area for both projects. Various parameters are
saved in this block, which may include:

 the entry in flash of the bootloadable project (4 byte address)

 the amount of flash occupied by the bootloadable project (Number of flash rows)

 the checksum for the bootloadable portion of flash (one byte)

 the size of the bootloadable portion of flash (4 bytes, in bytes)

8051 Details (PSoC 3)

In the PSoC 3, the only "exception vector" is the 3-byte instruction at address 0, which is executed at
processor reset. (The interrupt vectors are not in flash – they are supplied by the Interrupt
Controller [IC] ). So at reset the 8051 bootloader code simply starts executing from flash address 0.

ARM Cortex-M3 Details (PSoC 5)

In the PSoC 5, a table of exception vectors must exist at address 0. (The table is pointed to by the Vector
Table Offset Register, at address 0xE000ED08, whose value is set to 0 at reset.) The bootloader code
starts immediately after this table.

The table contains the initial stack pointer (SP) value for the bootloader project, and the address of the
start of the bootloader project code. It also contains vectors for the exceptions and interrupts to be used
by the bootloader.

The bootloadable project also has its own vector table, which contains that project’s starting SP value and
first instruction address. When the transfer is complete, as part of passing control to the bootloadable
project the value in the Vector Table Offset Register is changed to the address of the bootloadable
project’s table.

Bootloader Parameters
To access the bootloader parameters, open the Design-Wide Resources System Editor and expand the
bootloader section of the editor.

Wait for Command
Description: At reset, if the bootloader detects that the checksum in bootloadable project

flash is valid then it may optionally wait for a command to start a transfer
operation before jumping to the bootloadable project code.

Settings: Yes or no that the wait will take place.
Default: Yes

Modifiable by API or
Driver Firmware:

No

Relationship to other
parameters

If the selection is "yes" then the Wait for Command Time parameter is
editable. If the selection is "no" then that parameter is grayed out. In that
case an external system typically is not able to initiate a transfer, however
the bootloadable project code can still launch a transfer operation by calling
Bootloader_Start().



Bootloader System

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 67

Wait for Command Time
Description: At reset, if the bootloader detects that the checksum in bootloadable project

flash is valid then it may optionally wait for a command to start a transfer
operation before jumping to the bootloadable project code. This parameter is
the wait timeout period.

Settings: 1 – 255, in units of 10 msec.
Default: 10, or 100 msec.

Modifiable by API or
Driver Firmware:

No

Relationship to other
parameters

This parameter is editable only if the Wait for Command parameter is set to
"yes", otherwise it is grayed out.

IO Component
Description: This is the communications component that the bootloader uses to receive

commands and send responses. One and only one communications
component must be selected. Only two-way communications components
are used. For example, a UART must have both RX and TX enabled, and an
infrared (IrDA) component could not be used. A design rule check (DRC)
exists for the case where no two-way communications component has been
placed onto the bootloader project schematic.

Settings: This property is a list of the available IO communications protocols on the
schematic that have bootloader support. In all cases, independent of what is
on the schematic, there is also a Custom option available that allows for
implementing the bootloader functions directly.

Default: If no communications component is on the schematic, then the Custom
option will be selected. This allows for implementing the communication in
any way.

Modifiable by API or
Driver Firmware:

No

Relationship to other
parameters

None.

Fast Application Verification
Description: If enabled, the bootloader will compute the checksum for the application

code. If successful, it will store this information for future boot operations to
avoid the need to validate the application code at every boot.

Settings: Yes or no whether verification is remembered.
Default: No

Modifiable by API or
Driver Firmware:

No

Relationship to other
parameters

None.



Bootloader System

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 68

Checksum Type
Description: Provides a couple of options for the type of checksum to use when

transferring packets of data between the host and the bootloader.
Settings: Basic Sum which just adds up all the bytes and takes a 2's compliment. 16bit

CRC using the CCITT algorithm.
Default: Basic Sum.

Modifiable by API or
Driver Firmware:

No

Relationship to other
parameters

None.

Version
Description: Provides a 2 byte number to represent the version of the bootloader.

Settings: Any 2 byte number.
Default: 0x0000

Modifiable by API or
Driver Firmware:

No

Relationship to other
parameters

None.

Bootloadable Parameters

Version
Description: Provides a 2 byte number to represent the version of the bootloadable

application.
Settings: Any 2 byte number.

Default: 0x0000
Modifiable by API or

Driver Firmware:
No

Relationship to other
parameters

None.

Bootloadable ID
Description: Provides a 2 byte number to represent the ID of the bootloadable application.

Settings: Any 2 byte number.
Default: 0x0000

Modifiable by API or
Driver Firmware:

No

Relationship to other
parameters

None.



Bootloader System

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 69

Custom ID
Description: Provides a 4 byte custom ID number to represent anything in the application.

Settings: Any 4 byte number.
Default: 0x00000000

Modifiable by API or
Driver Firmware:

No

Relationship to other
parameters

None.

Bootloader API
The bootloader provides a public API call solely for the purpose of launching a transfer operation from
bootloadable project code. Once called, a software reset is executed, and then the bootloader takes over
the CPU. Bootloadable project code, including interrupt handlers, is not executed.

When a transfer operation starts, resources and peripherals are reconfigured as needed. All other
resources and peripherals are disabled.

When the transfer operation is complete, the CPU is reset.

void CyBtldr_Load( void )
Description: Starts a transfer operation. Reconfigures the device per bootloader project

configuration.
Parameters: void

Return Value: None. The processor is reset when the transfer is complete.
Side Effects: None

Bootloader Commands
The bootloader supports the following commands. All received bytes that do not start with one of the set
of command bytes is discarded with no response generated. All multi-byte fields are output LSB first.

Note The time required for the bootloader to execute any command is based on the configuration of the
device. Some of the factors that impact the timing include:

 clock speed at which the part is running

 toolchain used to build the project

 optimization settings used during the build

 number of interrupts running in the background



Bootloader System

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 70

Enter Bootloader

All other commands are ignored until this command is received.

Input
 Command Byte: 0x38

 Data Bytes: NA

Output
 Status/Error Codes:

 Success
 Error Command
 Error Data
 Error Length
 Error Checksum

 Data Bytes:
 4 bytes - Silicon ID
 1 byte - Silicon Rev
 3 bytes - Bootloader Version

Get Flash Size

Responds with the first and last available rows in the selected flash array.

Input
 Command Byte: 0x32

 Data Bytes:
 1 byte - Flash Array ID

Output
 Status/Error Codes:

 Success
 Error Command
 Error Data
 Error Length
 Error Checksum

 Data Bytes:
 2 bytes - First available row
 2 bytes - Last available row



Bootloader System

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 71

Program Row

Writes one row of flash data to the device.

Input
 Command Byte: 0x39

 Data Bytes:
 1 byte - Flash Array ID
 2 bytes - Flash Row Number
 n bytes - Data to write into the flash row

Output
 Status/Error Codes:

 Success
 Error Command
 Error Data
 Error Length
 Error Checksum
 Error Flash Row
 Error Active

 Data Bytes: NA

Erase Row

Erases the contents of the provided flash row.

Input
 Command Byte: 0x34

 Data Bytes:
 1 byte - Flash Array ID
 2 bytes - Flash Row Number

Output
 Status/Error Codes:

 Success
 Error Command
 Error Data
 Error Length
 Error Checksum
 Error Flash Row
 Error Active

 Data Bytes: NA



Bootloader System

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 72

Verify Row

Gets a 1 byte checksum for the contents of the provided row of flash

Input
 Command Byte: 0x3A

 Data Bytes:
 1 byte - Flash Array ID
 2 bytes - Flash Row Number

Output
 Status/Error Codes:

 Success
 Error Command
 Error Data
 Error Length
 Error Checksum

 Data Bytes:
 1 byte - Row checksum

Verify Checksum

Gets a 1-byte value indicating whether the checksum for the flash matches the expected checksum value.
A return value of 1 indicates that the checksums match and that the application is considered good. A
return value of 0 indicates that the checksums do not match, and that the application is invalid. This is the
same check that the bootloader will run before attempting to run the application code.

Input
 Command Byte: 0x31

 Data Bytes: N/A

Output
 Status/Error Codes:

 Success
 Error Command
 Error Data
 Error Length
 Error Checksum

 Data Bytes:
 1 byte - Application checksum valid



Bootloader System

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 73

Send Data

Sends a block of data to the device. This data is buffered up in anticipation of another command that will
inform the bootloader what to do with the data. If multiple send data commands are issued back-to-back,
the data is appended to the previous block. This command is used to breakup large transfers into smaller
pieces to prevent bus starvation in some protocols.

Input
 Command Byte: 0x37

 Data Bytes: n bytes - Data to save in the device

Output
 Status/Error Codes:

 Success
 Error Command
 Error Data
 Error Length
 Error Checksum

 Data Bytes: NA

Sync Bootloader

Resets the bootloader to a clean state, ready to accept a new command. Any data that was buffered will
be thrown out. This is only necessary if the host and client get out of sync with each other.

Input
 Command Byte: 0x35

 Data Bytes: NA

Output
 NA - This packet is not acknowledged

Exit Bootloader

Exits from the bootloader by triggering a software reset of the device. Before the software reset is
executed, the bootloadable application is verified. If the application passes verification, the application will
be executed after the software reset. If the application fails verification, then execution will begin again
with the bootloader after the software reset.

Input
 Command Byte: 0x3B

 Data Bytes: NA

Output
 NA - This packet is not acknowledged



Bootloader System

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 74

Get Application Status (Dual Application Bootloader Only)

Input
 Command Byte: 0x33

 Data Bytes:
 1byte – Application #

Output
 Status/Error Codes:

 Success
 Error Length
 Error Checksum
 Error Data

 Data Bytes:
 1byte – Application # Valid
 1byte –Application # Active

Set Active Application (Dual Application Bootloader Only)

Input
 Command Byte: 0x36

 Data Bytes:
 1byte – Application #

Output
 Status/Error Codes:

 Success
 Error Application
 Error Length
 Error Data
 Error Checksum

 Data Bytes: NA

Bootloader Packets
Packets sent to the bootloader have the following structure:

 1-byte packet start (0x01)

 1-byte command

 2-bytes data length

 n-bytes data

 2-bytes checksum

 1-byte packet end (0x17)



Bootloader System

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 75

Packets output from the bootloader have the following structure:

 1-byte packet start (0x01)

 1-byte status/error code

 2-bytes data length

 n-bytes data

 2-bytes checksum

 1-byte packet end (0x17)

Bootloader Status/Error Codes
The possible status/error codes output from the bootloader are as follows:

Bootloader Application
 Success – The command was successfully received and executed. Value = 0x00

 Error Length (CYRET_ERR_LENGTH) – The amount of data available is outside the expected
range. Value = 0x03

 Error Data (CYRET_ERR_DATA) – The data is not of the proper form. Value = 0x04

 Error Command (CYRET_ERR_CMD) – The command is not recognized. Value = 0x05

 Error Checksum (ERR_CHECKSUM) – The checksum does not match the expected value. Value
= 0x08

 Error Flash Row (ERR_ROW) – The flash row is not valid. Value = 0x0A

 Error Unknown (ERR_UNK) – An unknown error occurred. Value = 0x0F

 Error Application (CYRET_ERR_APP) – The application is not valid and cannot be set as active.
Value = 0x0C. (Dual Application Bootloader Only)

 Error Active (CYRET_ERR_ACTIVE) – The application is currently marked as active. Value =
0x0D. (Dual Application Bootloader Only)

Bootloader Host
 Error Device (CYRET_ERR_DEVICE) – The expected device does not match the detected

device. Value = 0x06

 Error Version (CYRET_ERR_VERSION) – The bootloader version detected is not supported.
Value = 0x07

Bootloader Application & Code Data File Format
The bootloader application & code data (.cyacd) file format is used to store the bootloadable portion of a
design. The file consists of a header followed by lines of flash data. Excluding the header, each line in the
.cyacd file represents an entire row of flash data. The data is stored as ASCII data in big endian format.

The header record has the format:
[4-byte SiliconID][1-byte SiliconRev][1-byte Checksum Type]



Bootloader System

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 76

The data records have the format:
[1-byte ArrayID][2-byte RowNumber][2-byte DataLength][N-byte Data]
[1-byte Checksum]

The checksum type in the header indicates the type of checksum used for packets sent between the
bootloader host and the bootloader itself. The checksum in the data records is a basic summation,
computed by summing all bytes (excluding the checksum itself) and then taking the 2's complement.

Bootloader Host Tool
PSoC Creator ships with a bootloader host tool (bootloader_host.exe) that can be used to test out the
bootloader running on a PSoC chip. The bootloader host tool is the application that communicates with
the bootloader itself to send new bootloadable images. The bootloader host tool provided is intended to
be used as a development and testing tool only.

Source Code

In addition to the host executable itself, much of the source code used is also provided. This source code
can be reused to create your own bootloader host applications. The source code is located in the
following directory:

<Install Dir>\cybootloaderutils\

By default, this directory is:

C:\Program Files\Cypress\PSoC Creator\<Release Version>\PSoC Creator\cybootloaderutils\

This source code is broken up into four different modules. These modules provide implementations for the
various pieces of functionality required for a bootloader host. Depending on the desired level of control,
some or all of these modules can be used in developing a custom bootloader host application.

cybtldr_command.c/h

This module handles construction of packets to send to the bootloader, and the parsing of packets
received from the bootloader. It has a single function for constructing each type of packet that the
bootloader understands, and a single function for parsing the results for each packet the bootloader can
send back.

cybtldr_parse.c/h

This module handles the parsing of the *.cyacd file that contains the bootloadable image to send to the
device. It has functions for Setting up access to the file, Reading the header, Reading the row data, and
closing the file.

cybtldr_api.c/h

Is a row level API that allows for sending a single row of data at a time to the bootloader using a supplied
communication mechanism. It has functions for setting up the bootload operation, programming a row,
erasing a row, verifying a row, and ending the bootload operation.

cybtldr_api2.c/h

Is a higher level API that handles the entire bootload process. It has functions for programming the
device, erasing the device, verifying the device, and aborting the current operation.



Bootloader System

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 77

Versions

The following are the features provided with different versions of the bootloader host tool:

Version 1.0.0 (PSoC Creator 1.0, Beta5)

Initial version; provides APIs for:

 Parsing *.cyacd file

 Constructing packets of data to send to the bootloader

 Functions for Programming, Erasing, Verifying rows of data

 Functions for performing the entire bootload operation

Version 1.1.0 (PSoC Creator 1.0, Production)

Provides all the functionality contained in Bootloader Host version 1.0.0. Adds support for using either a
basic sum (used in 1.0.0) or a new 16-bit CCITT checksum for ensuring packet integrity when
communicating with the bootloader.

Version 1.2.0 (PSoC Creator 2.0)

Provides all the functionality contained in Bootloader Host version 1.1.0. Adds support for communicating
with either the "Standard Bootloader" or the "Dual Application Bootloader."



Bootloader System

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 78



PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 79

12 System Functions

These functions apply to all architectures.

General APIs

uint8 CyEnterCriticalSection(void)
Description: CyEnterCriticalSection disables interrupts and returns a value indicating whether

interrupts were previously enabled (the actual value depends on whether the device
is PSoC 3 or PSoC 5).

Note Implementation of CyEnterCriticalSection manipulates the IRQ enable bit with
interrupts still enabled. The test and set of the interrupt bits is not atomic; this is true
for both PSoC 3 and PSoC 5. Therefore, to avoid corrupting processor state, it must
be the policy that all interrupt routines restore the interrupt enable bits as they were
found on entry.

Parameters: None
Return Value: uint8

PSoC 3 – Returns a value containing two bits:
bit 0: 1 if interrupts were enabled before CyEnterCriticalSection was called.
bit 1: 1 if IRQ generation was disabled before CyEnterCriticalSection was called.

PSoC 5 – Returns 1 if interrupts were previously enabled or 0 if interrupts were
previously disabled.

void CyExitCriticalSection(uint8 savedIntrStatus)
Description: CyExitCriticalSection re-enables interrupts if they were enabled before

CyEnterCriticalSection was called. The argument should be the value returned from
CyEnterCriticalSection.

Parameters: uint8 savedIntrStatus: Saved interrupt status returned by the CyEnterCriticalSection
function.

Return Value: None



System Functions

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 80

void CYASSERT(uint32 expr)
Description: Macro that evaluates the expression and if it is false (evaluates to 0) then the

processor is halted. This macro is evaluated unless NDEBUG is defined. If NDEBUG
is defined, then no code is generated for this macro. NDEBUG is defined by default
for a Release build setting and not defined for a Debug build setting.

Parameters: expr: Logical expression. Asserts if false.
Return Value: None

void CyHalt(uint8 reason)
Description: Halts the CPU.
Parameters: reason: Value to be passed for debugging. This value may be useful to know the

reason why CyHalt() was invoked.
Return Value: None

void CySoftwareReset(void)
Description: Forces a software reset of the device.
Parameters: None

Return Value: None

CyDelay APIs
There are four CyDelay APIs that implement simple software-based delay loops. The loops compensate
for bus clock frequency.

The CyDelay functions provide a minimum delay. If the processor is interrupted, the length of the loop will
be extended by as long as it takes to implement the interrupt. Other overhead factors, including function
entry and exit, may also affect the total length of time spent executing the function. This will be especially
apparent when the nominal delay time is small.

void CyDelay(uint32 milliseconds)
Description: Delay by the specified number of milliseconds. By default the number of cycles to

delay is calculated based on the clock configuration entered in PSoC Creator. If
the clock configuration is changed at run-time, then the function CyDelayFreq is
used to indicate the new Bus Clock frequency. CyDelay is used by several
components, so changing the clock frequency without updating the frequency
setting for the delay can cause those components to fail.

Parameters: milliseconds: Number of milliseconds to delay.
Return Value: None

Side Effects and
Restrictions:

CyDelay has been implemented with the instruction cache assumed enabled.
When instruction cache is disabled on PSoC 5, CyDelay will be two times larger.
For example, with instruction cache disabled CyDelay(100) would result in about
200 ms delay instead of 100 ms.



System Functions

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 81

void CyDelayUs(uint16 microseconds)
Description: Delay by the specified number of microseconds. By default the number of cycles

to delay is calculated based on the clock configuration entered in PSoC Creator.
If the clock configuration is changed at run-time, then the function CyDelayFreq is
used to indicate the new Bus Clock frequency. CyDelayUs is used by several
components, so changing the clock frequency without updating the frequency
setting for the delay can cause those components to fail.

Parameters: microseconds: Number of microseconds to delay.
Return Value: Void

Side Effects and
Restrictions:

CyDelayUS has been implemented with the instruction cache assumed enabled.
When instruction cache is disabled on PSoC 5, CyDelayUs will be two times
larger. For example, with instruction cache disabled CyDelayUs(100) would result
in about 200 us delay instead of 100 us.

void CyDelayFreq(uint32 freq)
Description: Sets the Bus Clock frequency used to calculate the number of cycles needed to

implement a delay with CyDelay. By default the frequency used is based on the
value determined by PSoC Creator at build time.

Parameters: freq: Bus clock frequency in Hz.
0: Use the default value
non-0: Set frequency value

Return Value: None

void CyDelayCycles(uint32 cycles)
Description: Delay by the specified number of cycles using a software delay loop.
Parameters: cycles: Number of cycles to delay.

Return Value: None



System Functions

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 82



PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 83

13 Startup and Linking

The cy_boot component is responsible for the startup of the system. The following functionality has been
implemented:

 Provide the reset vector

 Setup processor for execution

 Setup interrupts

 Setup the stack including the reentrant stack for the 8051

 Configure the device

 Initialize static and global variables with initialization values

 Clear all remaining static and global variables

 Integrate with the boot loader

 Call main() C entry point

PSoC 3
Startup is all handled by a single assembly file (KeilStart.a51) which is based on a template provided by
Keil. There isn’t a file specifically associated with linking.

PSoC 5
The startup and linker scripts have been custom developed by Cypress, but both of the toolchain vendors
that we currently support provide example linker implementations and complete libraries that solve many
of the issues that have been created by our custom implementations.

GCC Implementation

Use all the standard GCC libraries (libcs3, libc, libcs3unhosted, libgcc, libcs3micro). All of these libraries
are linked in by default.

Realview Implementation (applicable for MDK and RVDS)

Use all the standard libraries (C standardlib, C microlib, fplib, mathlib). All of these libraries are linked in
by default.

 Support for RTOS and user replacement of routines. This is possible because the library routines
are denoted as "weak" allowing their replacement if another implementation is provided.

 A mechanism is provided that allows for the replacement of the provided linker/scatter file with a
user version. This is implemented by allowing the user to create the file local to their project and



Startup and Linking

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 84

having a build setting that allows the specification of this file as the linker/scatter file instead of the
file provided automatically.

 Currently the heap and stack size are specified as a fixed quantity (4 K Stack, 1 K Heap). If
possible the requirement to specify Heap and Stack sizes should be removed entirely. If that is
not possible, then these values should be the defaults with the option to choose other values in
the Design-Wide Resources GUI.

 All the code in the Generated Source tree is compiled into a single library as part of the build
process. Then that compiled library is linked in with the user code in the final link.

CMSIS Support (PSoC 5)
Cortex Microcontroller Software Interface Standard (CMSIS) is a standard from ARM for interacting with
Cortex M-series processors. There are multiple levels of support. The following support is provided:

 Core Peripheral Access Layer
 core_cm3.c
 core_cm3.h

These files are used without modification. The same files work for all of our supported platforms.

Preservation of Reset Status (PSoC 3 and PSoC 5)
The value of the reset status register shall be read and cleared any time the device is booted and that
value shall be saved to a global SRAM variable. This register is RESET_SR0 for PSoC 3. That variable
along with defines for the fields in the register shall be provided.

uint8 CyResetStatus
Name Description

CY_RESET_LVID Low voltage detect digital
CY_RESET_LVIA Low voltage detect analog
CY_RESET_HVIA High voltage detect analog
CY_RESET_WD Watchdog reset
CY_RESET_SW Software reset
CY_RESET_GP0 General purpose bit 0
CY_RESET_GP1 General purpose bit 1



PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 85

14 Watchdog Timer

APIs

void CyWdtStart(uint8 ticks, uint8 lpMode)
Description: Enables the watchdog timer. The timer is configured for the specified count

interval, the Central Time Wheel is cleared, the setting for low power mode is
configured, and the watchdog timer is enabled.
Once enabled the watchdog cannot be disabled. The watchdog counts each time
the Central Time Wheel (CTW) reaches the period specified. The watchdog must
be cleared using the CyWdtClear() function before the watchdog counts to three.
The CTW is free running, so this will occur after between 2 and 3 timer periods
elapse.

Parameters: ticks: One of the four available timer periods

Value Define Time

0 CYWDT_2_TICKS 2 CTW Ticks
1 CYWDT_16_TICKS 16 CTW Ticks
2 CYWDT_128_TICKS 128 CTW Ticks
3 CYWDT_1024_TICKS 1024 CTW Ticks

lpMode: Low power mode configuration

Value Define Effect

0 CYWDT_LPMODE_NOCHANGE No Change
1 CYWDT_LPMODE_MAXINTER Switch to longest timer mode

during sleep / hibernate
3 CYWDT_LPMODE_DISABLED Disable WDT during sleep /

hibernate

Return Value: None
Side effects and

restrictions
All 'lpMode' parameter values are supported by PSoC 3 production silicon. PSoC 5
and PSoC 3 ES2 support only NOCHANGE.
The hardware implementation of the watchdog timer prevents any modification of
the timer once it has been enabled. It also prevents the timer from being disabled
once it has been enabled. This protects the watchdog timer from changes caused
by errant code. As a result, only the first call to CyWdtStart() after reset will have
any effect.



Watchdog Timer

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 86

void CyWdtClear()
Description: Clears (feeds) the watchdog timer.
Parameters: None

Return Value: None



PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 87

15 cy_boot Component Changes

Version 2.40
This section lists and describes the major changes in the cy_boot component version 2.40:

Description of Version 2.30 Changes Reason for Changes / Impact

Updated the CyPmSleep() and CyPmHibernate()
APIs.

Changes were made to improve power mode
configuration.

Version 2.30
This section lists and describes the major changes in the cy_boot component version 2.30:

Description of Version 2.30 Changes Reason for Changes / Impact

CyIntEnable and CyIntDisable functions have been
changed to be CYREENTRANT by default.

Many components require CyIntEnable and
CyIntDisable to be reentrant and these
components have no way to cause that to
happen. This means you no longer need to
populate a cyre file for these functions that you do
not call.

The implementation of CyPmSleep() and
CyPmAltActive() functions were modified by
removing 32 KHz ECO,100 KHz and 1 KHz ILO
power mode configuration before device low power
mode entry.

User was made responsible for clock power
modes configuration during Sleep and Alternate
Active mode.

The CyILO_SetPowerMode() and
CyXTAL_32KHZ_SetPowerMode() can be used
to configure clock power modes.

The information regarding user responsibility of
clock power mode configuration was added at the
PM API section.

The implementation of the CyPmSaveClocks() was
updated to set IMO clock frequency to 48 MHz
when "Enable Fast IMO during startup" is enabled,
and to 12 MHz otherwise. The IMO frequency is
always set to 12 MHz just before the low power
mode entry and restored immediately after wakeup.
The CyPmRestoreClocks() restores original value of
the IMO clock.

The IMO value should match FIMO and FIMO is
always 12 MHz.

The implementation of the CyPmRestoreClocks()
function was updated by removing restoring MHz
ECO and PLL disabled state.

The CyPmRestoreClocks() function is expected to
be called only after CyPmSaveClocks(), while the
last one always disables MHz ECO and PLL.



cy_boot Component Changes

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 88

Description of Version 2.30 Changes Reason for Changes / Impact

Global interrupts are disabled on
CyPmSleep()/CyPmHibernate() entry and restored
before return from the function.

Interrupts are disabled to prevent their occurrence
before the state of the device has been restored.

The CyPmSleep() and CyPmAltAct() function
implementations for PSoC 5 devices were updated
to ignore all parameters. The PSoC 5 device will go
into Sleep mode until it is woken by an interrupt
from one of three wakeup sources: Central Time
Wheel (CTW), Once per second, or Port Interrupt
Controller (PICU). These wakeup sources must
already be configured to generate an interrupt. The
CTW is configured using the SleepTimer
component and the Once per second interrupt using
the Real Time Clock component.

The CyPmSleep() and CyPmAltAct() functions
have to be used only with the following
parameters:
CyPmSleep(PM_SLEEP_TIME_NONE,
PM_SLEEP_SRC_NONE) and
CyPmAltAct(PM_ALT_ACT_TIME_NONE,
PM_ALT_ACT_SRC_NONE).

Updated architecture- and silicon-specific #defines
to be used across the content.
Improved performance of non-DMA configuration on
8051 devices.

These modifications decrease the startup time
and slightly reduce consumption of code memory
and internal data memory.

The implementation of the CyPmRestoreClocks()
was updated for PSoC5 silicon. The megahertz
crystal is given 130 ms to stabilize. Its readiness is
not verified after the hold-off timeout.

These modifications increase crystal startup time,
but ensure that crystal is ready to be used.

The power mode of the source clocks for the timer
used as the wakeup timer was removed from PM
API functions.

Before calling PM API function, you must
manually configure the power mode of the source
clocks for the timer that will be used as the
wakeup timer.

PSoC Creator Power Management section was
updated.

More detailed information on Power Management
API usage was added.

Version 2.21
This section lists and describes the major changes in the cy_boot component version 2.21:

Description of Version 2.21 Changes Reason for Changes / Impact

Provide a new option for selecting how to
compute checksums on data transferred
from the bootloader host to the
bootloader.

Provide a more robust way to check for errors during IO
transfers.

Provide a generic option to allow users to
define their own custom bootloader
communication functions.

Make adding support for additional communication
protocols (SPI, UART, ...) easier. Also provides a means of
supporting multiple communications components
concurrently in the same design.

Updated a few Power Management
functions to prevent some possible
issues.

Some parentheses were missing which could cause items
to be evaluated in the wrong order.



cy_boot Component Changes

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 89

Description of Version 2.21 Changes Reason for Changes / Impact

Added a variable CyResetStatus that can
be used to get the information from the
RESET_SR0 register.

This is provided because many of the fields contained within
the RESET_SR0 register are clear-on-read. Since the
bootloader needs to access this register as part of its
operation, it prevents the actual application code from
accessing the values. The variable is provided so that the
application can still get access to all the information.

Added a workaround for some PSoC3
devices to ensure that the NVL values
have been properly initialized.

On some PSoC 3 devices the NVL information may not be
initialized properly. This workaround is provided to ensure
that the NVLs are properly loaded before performing any of
the startup code.

Version 2.20
This section lists and describes the major changes in the cy_boot component version 2.20:

Description of Version 2.20 Changes Reason for Changes / Impact

Updated the CyDelayCycles function to
work with instruction cache enabled.

The original CyDelayCycles function was designed to be
used with the instruction cache disabled. For PSoC 3 ES3
and Production silicon, when the instruction cache is
enabled, the length of the delay was no longer correct.

Updated comments in the code and
descriptions in this guide for low power
mode functions.

The comments and descriptions for the CyPmSleep(),
CyPmHibernate(), and CyPmAltAct() functions we clarified
to refer to the silicon errata for a PSoC 3 ES2 and PSoC 5
defect.

Fixed a bootloader issue with the
CyBtldr_ValidateApp function.

Fixed an issue in the bootloader for PSoC 5 that would
cause it to fail to verify the application code if the application
code was larger than 64 K.

Addressed a bootloader wait for traffic
issue.

Modified what is required for the bootloader to consider that
there is activity and that someone appears to be attempting
to communicate.
Previously, if the Bootloader received any data over the
selected communications component it would then wait
forever for data. With this change, the bootloader will now
only wait forever if it has received the Enter Bootloader
command.

Updated the CySetTemp function to read
the die temperature twice to make sure it
has a stable value.

Change was made to address an issue. There is no impact.

Version 2.10
This section lists and describes the major changes in the cy_boot component version 2.10:

Description of Version 2.10 Changes Reason for Changes / Impact

Updated Flash verification code in the
bootloader

Fixed an issue in the bootloader's Verify routine that could
cause a failure to be reported even for a valid image if flash
was disabled.



cy_boot Component Changes

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 90

Version 2.0
This section lists and describes the major changes in the cy_boot component version 2.0:

Description of Version 2.0 Changes Reason for Changes / Impact

Keil C51 keywords available as macros These macros allow code to specify the memory space of
variables and pointers while maintaining compatibility with
other compilers. The most commonly used keywords are
CYCODE, CYXDATA, and CYDATA, which represent C51’s
code, xdata, and data keywords, respectively. On other
compilers, these macros are ignored.

CyLib APIs are no longer conditional It is no longer necessary to define macros such as
CYLIB_POWER_MANAGEMENT to include API functions
from CyLib.

Add separate section for .dma_init in
RealView linker script

This prevents potential errors and warnings when building
projects in RealView with DMA-based configuration
enabled.

Initialize complete SRAM interrupt vector
table

In previous versions, only the first 32 entries of the table
were being initialized.

Initialize reserved interrupt vectors to
default interrupt handler

In previous versions, the reserved vectors were initialized to
0, which is not a valid interrupt service routine address.

Fix incorrect endian in CyIntSetVector
return value on PSoC 3

In previous versions, the high and low bytes were swapped.

Apply interrupt attribute to interrupt
service routine declarations

Interrupt service routines declared with
CY_ISR/CY_ISR_PROTO/cyisraddress now have the
interrupt attribute, which causes the compiler to emit code to
adjust the stack alignment. RealView checks for the
interrupt attribute as part of the type, so interrupt service
routines or vectors that do not have the interrupt attribute
will fail to compile on RealView. For this reason,
cy_isr_v1_20 and earlier are not compatible with
cy_boot_v1_50 when using RealView. This affects PSoC 5
only; the interrupt attribute was already present in the PSoC
3 version.

Make CY_GET_REGxx/CY_SET_REGxx
reentrant and improve performance

The functions that implemented this functionality,
CyGetRegXX and CySetRegXX, have been replaced with
assembly routines. The new routines may be safely used in
interrupt service routines.

PSoC 3 ES3 support in CyDelay CPUCLK_DIV has been moved from a SFR to the
CLKDIST_MSTR1 in ES3.

Use limits.h and ctype.h to replace some
macros in CyLib.h

The LONG_MIN, LONG_MAX, and ULONG_MAX macros
are now provided by the toolchain-specific limits.h. This
prevents warnings caused by differences between the
compiler’s limits.h and CyLib.h.

Support for RealView in --gnu mode Corrected some preprocessor conditionals that caused
errors when RealView was used with the --gnu option.

Update PSoC 5 startup code to make
better use of standard libraries

The startup code used in PSoC 5 projects has been
updated to use standard libraries to provide the initialization.
This provides for a standard initialization.

Replaced cydevice.h with cydevice_trm.h cydevice.h has been marked obsolete, so the APIs and
generated code provided with PSoC Creator should not use
it.



cy_boot Component Changes

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 91

Description of Version 2.0 Changes Reason for Changes / Impact

CYCODE, CYDATA, CYXDATA and
CYFAR defines are copied over to
cytypes.h

Now any component can make use of these defines, Ex
Flash component

Fix for the cache flash cycles incorrect
behavior after sleep.

CYREG_CACHE_CR doesn't retain its value in PSOC 3
after the sleep

Miscellaneous Flash/EEPROM API
changes.

Define active/standby power configuration registers based
on silicon.
Define active/standby power configuration register constant
based on silicon.
Added CyFlash_Start() and CyFlash_Stop() APIs.
Removed CyFlashEEActivePower() and
CyFlashEEStandbyPower() APIs,
Modified CySetFlashEEBuffer()for PSoC 3 so as not to test
whether the buffer is not a pointer at 0.
Changed an argument in CyWriteRowConfig() API to
rowData.
Added CyEEPROM_Start(), CyEEPROM_Stop(),
CyEEPROM_ReadReserve(), CyEEPROM_ReadRelease(),
and CyFlash_SetWaitCycles(uint8 freq) APIs.
Power mode registers and power mode register constants
are defined based on the silicon.
Cache Control register is defined based on the silicon.

Added reentrancy support. Appropriate APIs in cylib.c/h, cyflash.c/h, cydmac.c/h and
cyspc.c/h files were updated to include reentrant support.

Converted cymemset and cymemcpy to
macros, removed cymemmove.

The memset/memcpy/memmove provided by the toolchain
vendor are typically faster than the generic implementation
because they are designed for the specific target platform.
Including both the vendor-provided functions and the
generic implementation wastes code space. Non-legacy
code should use memset and memcpy directly.



cy_boot Component Changes

PSoC® Creator™ System Reference Guide, Document Number: 001-73816, Rev. ** 92

Description of Version 2.0 Changes Reason for Changes / Impact

Added numerous new clock APIs:
CyPLL_OUT_Start_confirm
CyMasterClock_SetSource
CyMasterClock_ActivateIMOAndSet
CyMasterClock_ActivatePLLAndSet
CyIMO_ActivateAndWait
CyIMO_SetFrequency
CyIMO_EnableDisableDoubler
CyIMO_EnableDoubler
CyIMO_DisableDoubler
CyIMO2X_SetSource
CyPLL_P_SetValue
CyPLL_Q_SetValue
CyPLL_SetInput
CyXTAL_SetGain
CyXTAL_SetVref
CyILO_1KHZ_Start
CyILO_1KHZ_Stop
CyILO_100KHZ_Start
CyILO_100KHZ_Stop
CyILO_33KHZ_Start
CyILO_33KHZ_Stop
CyILO_SelectClock
CyUSB_Start
CyUSB_Stop
CyUSB_SetClockSource
CyUSB_SetClockSource_IMO2X
CyUSB_SetClockSource_IMO
CyUSB_SetClockSource_PLL
CyUSB_SetClockSource_DSI
CyUSB_EnableDivider
CyUSB_DisableDivider
CyCLK_SetDividerValue
CyCLK_SetBusDividerValue

To provide additional functionality.

char8 datatype is defined as char. To support new compilers in future.
Renamed CySleep and CyHibernate APIs
to CyPmSleep and CyPmHibernate;
added new CyPmAltAct API.

There were deficiencies in the low power APIs before
cy_boot 2.0. You must update your design to use cy_boot
2.0 and rewrite the low power portion of the design to use
the new APIs.


	1 Introduction
	Conventions
	References
	Revision History

	2 Standard Types and Defines
	Base Types
	Hardware Register Types
	Compiler Defines
	Keil 8051 Compatibility Defines
	Return Codes
	Interrupt Types and Macros
	Interrupt vector address type

	Intrinsic Defines
	Device Version Defines

	3 Clocking
	PSoC Creator Clocking Implementation
	Clock Connectivity
	BUS_CLK
	Global Clock
	Routed Clock

	Clock Synchronization
	Synchronous Clock
	Asynchronous Clock
	Making Signals Synchronous

	Routed Clock Implementation
	Example with a Divided Clock
	Example with a Clock from a Pin
	Example with Multiple Clock Sources
	Overriding Routed Clock Transformations

	Using Asynchronous Clocks
	Clock Crossing
	Gated Clocks
	Fixed-Function Clocking

	APIs
	uint8 CyPLL_OUT_Start(uint8 wait)
	void CyPLL_OUT_Stop()
	void CyPLL_OUT_SetPQ(uint8 P, uint8 Q, uint8 current)
	void CyPLL_OUT_SetSource(uint8 source)
	void CyIMO_Start(uint8 wait)
	void CyIMO_Stop()
	void CyIMO_SetFreq(uint8 freq)
	void CyIMO_SetSource(uint8 source)
	void CyIMO_EnableDoubler()
	void CyIMO_DisableDoubler()
	void CyMasterClk_SetSource(uint8 source)
	void CyMasterClk_SetDivider(uint8 divider)
	void CyBusClk_SetDivider(uint16 divider)
	void CyCpuClk_SetDivider(uint8 divider)
	void CyUsbClk_SetSource(uint8 source)
	void CyILO_Start1K()
	void CyILO_Stop1K()
	void CyILO_Start100K()
	void CyILO_Stop100K()
	void CyILO_Enable33K()
	void CyILO_Disable33K()
	void CyILO_SetSource(uint8 source)
	uint8 CyILO_SetPowerMode(uint8 mode)
	void CyXTAL_32KHZ_Start()
	void CyXTAL_32KHZ_Stop()
	uint8 CyXTAL_32KHZ_ReadStatus()
	uint8 CyXTAL_32KHZ_SetPowerMode(uint8 mode)
	uint8 CyXTAL_Start(uint8 wait)
	void CyXTAL_Stop()
	void CyXTAL_EnableErrStatus()
	void CyXTAL_DisableErrStatus()
	uint8 CyXTAL_ReadStatus()
	void CyXTAL_EnableFaultRecovery()
	void CyXTAL_DisableFaultRecovery()
	void CyXTAL_SetStartup(uint8 setting)
	void CyXTAL_SetFbVoltage(uint8 setting)
	void CyXTAL_SetWdVoltage(uint8 setting)


	4 Power Management
	Clock Configuration
	Wakeup Time Configuration
	Wakeup Source Configuration
	PSoC 3 Alternate Active Mode Specific Issues

	APIs
	void CyPmSaveClocks()
	void CyPmRestoreClocks()
	void CyPmAltAct(uint16 wakeupTime, uint16 wakeupSource)
	CyPmAltAct (Continued)
	void CyPmSleep(uint8 wakeupTime, uint16 wakeupSource)
	CyPmSleep (Continued)
	void CyPmHibernate()
	uint8 CyPmReadStatus(uint8 mask)

	Instance Low Power APIs
	void `=instance_name`_Sleep (void)
	void `=instance_name`_Wakeup (void)
	void `=instance_name`_SaveConfig(void)
	void `=instance_name`_RestoreConfig(void)


	5 Interrupts
	APIs
	CyGlobalIntEnable
	CyGlobalIntDisable
	uint32 CyDisableInts()
	void CyEnableInts(uint32 mask)
	void CyIntEnable(uint8 number)
	void CyIntDisable(uint8 number)
	uint8 CyIntGetState(uint8 number)
	cyisraddress CyIntSetVector(uint8 number, cyisraddress address)
	cyisraddress CyIntGetVector(uint8 number)
	cyisraddress CyIntSetSysVector(uint8 number, cyisraddress address)
	cyisraddress CyIntGetSysVector(uint8 number)
	void CyIntSetPriority(uint8 number, uint8 priority)
	uint8 CyIntGetPriority(uint8 number)
	void CyIntSetPending(uint8 number)
	void CyIntClearPending(uint8 number)


	6 Cache
	PSoC 3 Cache Functionality
	PSoC 5 Cache Functionality
	void CyFlushCache()


	7 Pins
	APIs
	uint8 CyPins_ReadPin(uint16/uint32 pinPC)
	void CyPins_SetPin(uint16/uint32 pinPC)
	void CyPins_ClearPin(uint16/uint32 pinPC)
	void CyPins_SetPinDriveMode(uint16/uint32 pinPC, uint8 mode)
	uint8 CyPins_ReadPinDriveMode(uint16/uint32 pinPC)
	void CyPins_FastSlew(uint16/uint32 pinPC)
	void CyPins_SlowSlew(uint16/uint32 pinPC)


	8 Register Access
	APIs
	uint8 CY_GET_REG8(uint16/uint32 reg)
	void CY_SET_REG8(uint16/uint32 reg, uint8 value)
	uint16 CY_GET_REG16(uint16/uint32 reg)
	void CY_SET_REG16(uint16/uint32 reg, uint16 value)
	uint32 CY_GET_REG24(uint16/uint32 reg)
	void CY_SET_REG24(uint16/uint32 reg, uint32 value)
	uint32 CY_GET_REG32(uint16/uint32 reg)
	void CY_SET_REG32(uint16/uint32 reg, uint32 value)
	uint8 CY_GET_XTND_REG8(uint32 reg)
	void CY_SET_XTND_REG8(uint32 reg, uint8 value)
	uint16 CY_GET_XTND_REG16(uint32 reg)
	void CY_SET_XTND_REG16(uint32 reg, uint16 value)
	uint32 CY_GET_XTND_REG24(uint32 reg)
	void CY_SET_XTND_REG24(uint32 reg, uint32 value)
	uint32 CY_GET_XTND_REG32(uint32 reg)
	void CY_SET_XTND_REG32(uint32 reg, uint32 value)


	9 DMA
	10 Flash and EEPROM
	APIs
	cystatus CySetTemp()
	cystatus CySetFlashEEBuffer(uint8 *buffer)
	cystatus CyWriteRowFull(uint8 arrayId, uint16 rowAddress, uint8 *rowData, uint16 rowSize)
	cystatus CyWriteRowData(uint8 arrayId, uint16 rowAddress, uint8 *rowData)
	cystatus CyWriteRowConfig(uint8 arrayId, uint16 rowAddress, uint8 *rowData)
	void CyFlash_Start()
	void CyFlash_Stop()
	void CyFlash_SetWaitCycles(uint8 freq)
	void CyEEPROM_Start()
	void CyEEPROM_Stop()
	void CyEEPROM_ReadReserve()
	void CyEEPROM_ReadRelease()


	11 Bootloader System
	Bootloader Component
	Communications Component
	Custom Bootloader Component
	Bootloader Project Types
	Bootloader Project
	Bootloadable Project
	Bootloader and Bootloadable Project Functions
	PSoC Creator Project Output Files

	Memory Usage
	8051 Details (PSoC 3)
	ARM Cortex-M3 Details (PSoC 5)

	Bootloader Parameters
	Wait for Command
	Wait for Command Time
	IO Component
	Fast Application Verification
	Checksum Type
	Version

	Bootloadable Parameters
	Version
	Bootloadable ID
	Custom ID

	Bootloader API
	void CyBtldr_Load( void )

	Bootloader Commands
	Enter Bootloader
	Input
	Output

	Get Flash Size
	Input
	Output

	Program Row
	Input
	Output

	Erase Row
	Input
	Output

	Verify Row
	Input
	Output

	Verify Checksum
	Input
	Output

	Send Data
	Input
	Output

	Sync Bootloader
	Input
	Output

	Exit Bootloader
	Input
	Output

	Get Application Status (Dual Application Bootloader Only)
	Input
	Output

	Set Active Application (Dual Application Bootloader Only)
	Input
	Output


	Bootloader Packets
	Bootloader Status/Error Codes
	Bootloader Application
	Bootloader Host

	Bootloader Application & Code Data File Format
	Bootloader Host Tool
	Source Code
	cybtldr_command.c/h
	cybtldr_parse.c/h
	cybtldr_api.c/h
	cybtldr_api2.c/h

	Versions
	Version 1.0.0 (PSoC Creator 1.0, Beta5)
	Version 1.1.0 (PSoC Creator 1.0, Production)
	Version 1.2.0 (PSoC Creator 2.0)



	12 System Functions
	General APIs
	uint8 CyEnterCriticalSection(void)
	void CyExitCriticalSection(uint8 savedIntrStatus)
	void CYASSERT(uint32 expr)
	void CyHalt(uint8 reason)
	void CySoftwareReset(void)

	CyDelay APIs
	void CyDelay(uint32 milliseconds)
	void CyDelayUs(uint16 microseconds)
	void CyDelayFreq(uint32 freq)
	void CyDelayCycles(uint32 cycles)


	13 Startup and Linking
	PSoC 3
	PSoC 5
	GCC Implementation
	Realview Implementation (applicable for MDK and RVDS)

	CMSIS Support (PSoC 5)
	Preservation of Reset Status (PSoC 3 and PSoC 5)
	uint8 CyResetStatus


	14 Watchdog Timer
	APIs
	void CyWdtStart(uint8 ticks, uint8 lpMode)
	void CyWdtClear()


	15 cy_boot Component Changes
	Version 2.40
	Version 2.30
	Version 2.21
	Version 2.20
	Version 2.10
	Version 2.0


